Environmental Resources Management Australia

6th Floor, 172 St. Georges Terrace Perth WA 6000

PO Box 7338 Cloisters Square WA 6850

Telephone +61 8 9321 5200 Facsimile +61 8 9321 5262

www.erm.com

17 May, 2013

Rajan Sinha Yara Pilbara Nitrates Pty Ltd 5th Floor, 182 St Georges Terrace, Perth Western Australia 6000 AUSTRALIA

Our Reference: 0086269

Attention: Rajan Sinha

Dear Rajan,

RE: GROUNDWATER MONITORING MARCH AND APRIL 2013

1. INTRODUCTION

Environmental Resources Management Australia Pty Ltd (ERM) was engaged by Yara Pilbara Nitrates Pty Ltd (YPNPL) to conduct a Groundwater Monitoring Event (GME) at the proposed site for the YPNPL Technical Ammonium Nitrates Plant Facility (TANPF) in March 2013. Following detections of analytes above trigger levels, an additional GME was undertaken in April 2013. The site location and layout are illustrated in *Figures 1 and 2*, provided in *Annex A*.

2. PROJECT APPRECIATION

Lot 3017 within the Burrup Industrial Estate (BIE) occupies an area of approximately 49 ha with Village Road to the north and Hearson Cove Road to the south. The existing ammonia fertiliser plant is situated adjacent to the western boundary of Lot 3017, with vacant land present between the site and Hearson Cove to the east.

The site (including temporary laydown areas) occupies approximately 35 ha of land in the north-western section of Lot 3017. Bulk earthworks disturbance associated with construction of permanent works for the TANPF will be constrained to approximately 20.5 ha of land located within the western quadrant of the site (see *Figure 1*).

Environmental Resources Management Australia Pty Ltd A.C.N. 002 773 248 A.B.N. 12 002 773 248 The TANPF will comprise three major processing units, including: a nitric acid plant, ammonium nitrate solutions plant and the technical ammonium nitrate (TAN) plant. The proposed site preparation works for the TANPF are anticipated to include the following activities:

- Removal of vegetation within the designated area;
- Preparing the TANPF footprint and lay-down/stockpile areas, which will include cut and fill activities;
- Installation of site drainage;
- Establishment of perimeter fencing;
- Road and access tracks for construction; and
- Potential dewatering and trenching (pending more detailed design requirements).

3. OBJECTIVES

Prior to the commencement of construction at the site, the groundwater below the site was characterised and baseline conditions were established. The baseline conditions were used to establish trigger levels (set at 10% above the maximum baseline concentration) for ongoing GME's during the construction of the site. The primary objective of the March and April GME was to determine if the construction activities at the site has impacted the groundwater below the site. The April GME was undertaken to further assess groundwater conditions following low level exceedences of trigger levels recorded during the March GME.

4. SCOPE OF WORKS

In order to achieve the project objectives, the following scope of work was completed by ERM for each of the March and April GME's:

- 1) Preparation of site works risk/hazard analysis documents (Work Activity Risk Assessment (WARN)) and the preparation of a health and safety plan to oversee safe work practices at the site.
- 2) A single GME in March 2013 with an additional follow-on GME in April 2013, comprising the sampling of five established on-site wells (*Figure 2*). Each GME included:
 - a. Gauging of groundwater depths;
 - b. Measurement of groundwater field parameters during well purging to determine a stabilisation of field parameters prior to groundwater sampling; and
 - c. Collection and analysis of groundwater samples to assess groundwater conditions.
- 3) Laboratory analysis of groundwater samples, including a Modified Acid Sulphate Soils Suite and an Extended Groundwater Quality suite. Five primary samples (one from each well), one duplicate sample and relevant quality assurance samples were taken. Analysis was undertaken by a NATA accredited laboratory to ensure quality assurance.
- 4) Screening of laboratory results against trigger levels.
- 5) The preparation of this short factual report to detail the scope of works undertaken and the results of the investigation.

5. METHODOLGY

5.1 HEALTH AND SAFETY

All works were completed in accordance with ERM health and safety (H&S) procedures. This included the preparation of site works risk/hazard analysis documents and the preparation of an H&S plan to ensure safe work practices at the site.

5.2 GAUGING OF GROUNDWATER DEPTHS

Groundwater monitoring wells were gauged during both the March 2013 and April 2013 GME's with an interface probe in accordance with ERM's standard operation procedures with the exception of MW1 during the April 2013 GME. The ground around the well has been lowered and the monitoring well casing sticking up above the ground has bent such that the interface probe would not fit down the well. Groundwater levels where recorded, are presented in *Annex B*.

5.3 GROUNDWATER SAMPLING

March 2013 GME

The five existing groundwater monitoring wells (MW1-MW5) were purged and sampled in accordance with ERM's standard groundwater sampling protocols using disposable plastic bailers. A minimum of three well volumes were purged from each groundwater monitoring well prior to sampling. Field parameters were measured after each well volume and the sample collected following the stabilisation of field parameters over three consecutive readings. Construction work around the well heads has caused damage to the well casing on monitoring wells MW4 which prevented purging and sampling from the monitoring well.

April 2013 GME

The three groundwater monitoring wells (MW2, MW3 and MW5) were purged and sampled in accordance with ERM's standard groundwater sampling protocols using disposable plastic bailers. A minimum of three well volumes were purged from each groundwater monitoring well prior to sampling. Field parameters were measured after each well volume and the sample collected following the stabilisation of field parameters over three consecutive readings. Construction work around the well heads has caused damage to the well casing on monitoring wells MW1 and MW4 which prevented the use of bailers for purging and sampling. For these two wells a low flow peristaltic pump was used. Field parameters were measured at two minute intervals with the peristaltic pump operating at a flow of 0.5L per minuet in accordance with ERM's standard low flow groundwater sampling protocols. The groundwater sample was collected following the stabilisation of field parameters over three consecutive readings. It is considered unlikely that the change of sampling technique will compromise the quality of the field data and groundwater samples for laboratory analysis.

Field parameters for both the March and April GME were measured using a calibrated water quality meter and included temperature, pH, oxygen reduction potential, electrical conductivity and dissolved oxygen. The stabilised water quality parameters are detailed in *Annex B*. All groundwater samples were collected, stored and transported to the laboratory under strict chain of custody procedures.

5.4 QUALITY ASSURANCE AND QUALITY CONTROL

For each of the GME's QA/QC samples were collected and analysed in accordance with *Australian Standard AS/NZS 5667.11:1998: Water Quality – Sampling – Guidance on Sampling of Groundwater.* This included the collection of field duplicates at a frequency of no less than 1 in 10 samples as well as a rinsate sample from the interface meter to demonstrate the sufficiency of the decontamination procedure.

March 2013 GME

A single duplicate sample was collected from MW3 and submitted for laboratory analysis. Of the Relative Percentage Difference (RPD) values able to be calculated, all but three were within the acceptable limit. The analytes outside of the acceptable RPDs were aluminium, iron and phosphorous. Given the high level of reproducibility for other analytes, this is not considered to represent an unacceptable level of uncertainty with respect to data quality.

A rinsate sample was collected from the equipment and submitted for laboratory analysis following the GME. The results showed all analytes below the laboratory limit of detection with the exception of zinc where a low concentration, slightly above the laboratory limit of detection was recorded. The presence of zinc in rinsate samples from previous GME's would suggest that the rinsate provided by the Laboratory contains trace concentrations of zinc.

The trip blank sample stored in the esky during transit did not record any analytes above the limit of detection therefore suggesting that there has been no cross contamination from samples during transit and storage.

April 2013 GME

A single duplicate sample was collected from MW5 and submitted for laboratory analysis. Of the Relative Percentage Difference (RPD) values able to be calculated all were within the acceptable limit.

A rinsate sample was collected from the equipment and submitted for laboratory analysis following the GME. The results showed all analytes below the laboratory limit of detection with the exception of zinc where a low concentration, slightly above the laboratory limit of detection was recorded. The presence of zinc in rinsate samples from the March 2013 GME and previous GME's would suggest that the rinsate provided by the Laboratory contains trace concentrations of zinc.

The trip blank sample stored in the esky during transit did not record any analytes above the limit of detection therefore suggesting that there has been no cross contamination from samples during transit and storage.

5.5 LABORATORY ANALYSIS

Groundwater samples from both the March 2013 and April 2013 GME's were submitted to SGS Australia Pty Ltd (SGS), a NATA accredited laboratory. Samples were analysed for a suite of compounds including:

- Cations and anions including calcium, magnesium, sodium, potassium, phosphate, ammonia, carbonate, bicarbonate, chloride, sulphate, nitrate, nitrite and silica;
- Total dissolved solids (TDS), and total alkalinity; and
- Dissolved metals including; aluminium, arsenic, cadmium, chromium, iron, lead, manganese, mercury, selenium and zinc.

March 2013 GME

Groundwater temperature was ranged between 30.7 and 34.3°C; which higher than previous monitoring in October 2012 but can most likely be attributed to seasonal changes in weather conditions. The pH results ranged between 6.84 and 7.32 indicating neutral conditions, which is consistent with historical results. Oxygen reduction potentials were consistent for the duration of the sampling period (approx. 33.2 – 135.9 mV). Electrical conductivity remained consistent across the monitoring wells with the exception of MW5 where an elevated electrical conductivity reading compared to previous GME's was displayed. Dissolved oxygen content was recorded as 0.99 – 1.82 mg/L during the GME which is consistent with previous GMEs.

The field and laboratory results of the GME are presented in *Annex B* and laboratory analytical reports and chain of custody documentation are presented in *Annex C*. A review of the displayed a number of low exceedences of the trigger levels (set at 10% above the maximum baseline concentration). The Following exceedences of trigger levels were observed.

- Monitoring well MW1 recorded a Total suspended soils (TSS) concentration of 2,900 mg/L;
- Monitoring well MW3 recorded a phosphorous concentration of 1.6 mg/L; and
- Monitoring well MW5 recorded an ammonia concentration of 1.2 mg/L and an ammonia (as N) concentration of 1,000 ug/L.

April 2013 GME

Groundwater temperature was ranged between 31.9 and 34.4°C; which slightly higher than the March 2013 GME. The pH results ranged between 6.71 and 7.19 indicating neutral conditions, which is consistent with March 2013 GME and historical results. Oxygen reduction readings remain comparable to previous GME's with reading between 2.69 and 210.7 mV. Electrical conductivity appears to have increased in monitoring wells MW3, MW4 and MW5 of the in comparison to previous GME's undertaken. MW5 remains hypersaline however salinity of other wells closest to the drainage system are also increasing likely as a result of precipitation of salts after high rainfall/flood events and leaching of these into the groundwater. Dissolved oxygen content was recorded as 0.13 – 3.44 mg/L during the GME which is consistent with previous GMEs.

The field and laboratory results of the GME are presented in *Annex B* and laboratory analytical reports and chain of custody documentation are presented in *Annex C*. A review of the displayed a number of low exceedences of the trigger levels (set at 10% above the maximum baseline concentration). The following exceedences of trigger levels were observed:

- Monitoring well MW1 recorded a nitrate concentration of 9.7 mg/l;
- Monitoring well MW3 recorded an ammonia concentration of 0.94 mg/L, an aluminium concentration of 0.072 mg/L, an iron (filtered) concentration of 0.52 mg/L and a manganese (filtered) concentration of 1.7 mg/L;
- Monitoring well MW4 recorded an aluminium concentration of 0.031 mg/L; and
- Monitoring well MW5 recorded a reactive phosphorous (as P) concentration of 0.014 and an aluminium concentration of 0.3 mg/L.

7. CONCLUSION

The results of the March 2013 and April 2013 Groundwater Monitoring Events (GMEs) display a number of exceedences in the set trigger levels. However none of the analytes which exceeded a trigger level during the March 2013 GME exceeded the trigger level during the April 2013 GME at the same well location. Sampling methodology has remained generally consistent and while two wells were sampled with low flow pumps as opposed to bailers, this would be unlikely to affect the groundwater chemistry.

It is noted that the salinity of the groundwater varies from brackish to hypersaline the closer the wells are to the natural surface water drainage systems. Groundwater in the vicinity of MW5 has likely been derived from multiple directions, while those monitoring wells located further away from the main drainage intercept groundwater from more discrete flow directions.

Until the wells are surveyed in, it is not possible to assess actual groundwater flow direction. However what is likely is that depending on the groundwater flow paths intercepted by the monitoring wells, groundwater chemistry is likely to differ between wells. In addition, rainfall events and cyclonic activity causing localised flooding will result in seasonal changes to groundwater recharge and resultant groundwater chemistry. The variability in the groundwater chemistry observed both between monitoring wells and between monitoring events with no clear trends suggests the results depict natural variability in groundwater chemistry as opposed to increasing concentrations of analytes associated with site activities. None of the analytes observed exceeding the trigger levels are attributed to current on site activities.

Site levelling activities may have exposed areas of ground and soils not previously exposed to rainfall and leaching, and it is possible that leaching of these soils has released localised increased metals into the groundwater.

The variability in chemistry between monitoring wells and between monitoring events should continue to be assessed biannually in order to build a more comprehensive data set of range in concentration over time and determine whether there are clear trends emerging and if so likely causes. Based on this data, the current trigger level concentrations may need to be revaluated to account for natural variability.

Should you require any clarification please contact the undersigned.

Yours Sincerely, for Environmental Resources Management Australia Pty Ltd

Susup

Sean Scaife Project Manager

Paul Myers-Allen Partner

Annex A

SITE LOCATION & WELL LOCATIONS

AD CONTRACTOR	ei ei	5				
20 	⊕ MW1	∲ MW2		7		
	⊕ MW4		Z			
the second se						
				- {		のとう
				-ue		
	NA		Sample MW1	Easting (m) 477746.59	Northing (m) 7719629.6	
			MW2 MW3	477975.95 478230.28	7719637.4 7719610.87	
Legend	Sito	C. R.S.	MW4 MW5	477724.74 477979.99	7719297.26 7719304.02	and the second s
 Proposed Development Area 'The Site D Boundary Monitoring Well Contour Elevation (10m interval) 	Client: Drawing No: Date:	Yarra Pilbara Nitrates Pty Ltd 0086269p_GME_Mar_Apr_2013_G002_R0.mxd 09/05/2013 Drawing Size: A4	Figure 2 - Well Lo	cations	//13304.02	
Saline Coastal Flat 0 100 200 300m	N Chis figure may verified by ERM otherwise, this figure may warrant its accur	DN Reviewed By: JG be based on third party data or data which has not been at and it may not be to scale. Unless expressly agreed figure is intended as a guide only and ERM does not racy.	Environmental Resource Auckland, Brisbane, Valley, Melbourne, Pert	ces Management ANZ Canberra, Christchu h, Port Macquarie, Sy	rch, Hunter ER) M

Annex B

RESULTS TABLES

March 2013 GME

Bore ID	Easting	Northing	Date	Bore Depth (m ToC)	Depth to Water (m ToC)
MW1	477750.267	7719618.897	6-Mar-13	8.74	4.90
MW2	477982.134	7719632.321	6-Mar-13	8.20	4.43
MW3	478228.561	7719614.98	6-Mar-13	7.18	2.80
MW4	477721.886	7719289.889	6-Mar-13	7.21	3.95
MW5	477976.901	7719306.205	6-Mar-13	5.07	0.91

April 2013 GME

Bore ID	Easting	Northing	Date	Bore Depth (m ToC)	Depth to Water (m ToC)
MW1	477750.267	7719618.897	17-Apr-13	Probe would no	ot fit down well
MW2	477982.134	7719632.321	17-Apr-13	8.21	4.60
MW3	478228.561	7719614.98	17-Apr-13	8.19	3.01
MW4	477721.886	7719289.889	17-Apr-13	7.35	4.07
MW5	477976.901	7719306.205	17-Apr-13	5.97	2.02

Well ID	Date	Time	Volume purged (L)	На	Temperature (ºC)	Electrical Conductivity (μS/cm)	Dissolved Oxygen (mg/L)	Field Redox Potential (mV)	Estimated TDS (mg/L)	Comments
MW1	6/03/2013	16:45	21.5	7.26	30.7	1820	1.82	70.5	1183	Slightly cloudy, no odour
MW2	6/03/2013	14:30	21.0	7.28	32.0	1650	1.65	37.9	1073	Turbid, slightly brown, no odour
MW3	6/03/2013	14:32	24.0	7.32	31.1	1490	1.49	33.2	969	Turbid, pale brown, no odour
MW4	6/03/2013									Unable to monitor due to damage to well casing
MW5	6/03/2013	16:11	24.0	6.84	34.3	141200	0.99	135.9	91780	Turbid, cream to pale brown, no odour

April 2013 GME

Well ID	Date	Time	Volume purged (L)	На	Temperature (ºC)	Electrical Conductivity (μS/cm)	Dissolved Oxygen (mg/L)	Field Redox Potential (mV)	Estimated TDS (mg/L)	Comments
MW1	17/04/2013	12:14	4.0	6.71	32.4	1563	0.58	2.69	1016	
MW2	17/04/2013	11:48	33.0	6.9	32.2	4690	3.44	101	3049	
MW3	17/04/2013	11:18	33.0	7.19	31.90	17950	1.78	27.5	11668	
MW4	17/04/2013	12:50	2.5	7.17	33.9	67400	0.13	15.72	43810	Turbid, red brown
MW5	17/04/2013	13:21	33.0	6.77	34.4	147300	2.24	210.7	95745	

										Ino	organics							Lead								Meta	ıls							Organic		TPH	
																	-																				
			linity (Bicarbonate) linity (total) as CaCO3	tonia	tonia as N ride	ide and 64.0	Balance	dahl Nitrogen Total ate (as N)			ite (as NO2-) ogen (Total Oxidised) ocen (Total)	tive Phosphorus as P	.a .a (Filtered)	um (Filtered) hate	hide		ness as CaCO3 (Filtered	(Filtered)	inium	uinium (Filtered)	nic (Filtered)	nium (Filtered) um (Filtered)	mium (hexavalent)	mium (III+VI) (Filtered)	mium (Trivalent)	er (Filtered)	(Filtered) nesium (Filtered)	ganese (Filtered)	uy	el (Filtered)	phorus sium (Filtered)	nium (Filtered) on (Filtered)	(Filtered)	linity (Carbonate)	CI4	3° - 53	- C36 (Sum of total)
			Alkal	Amm	Amm Chloi	Fluor	Ionic	Kjeld Nitra	Nitrate	Nitri	Nitro Nitro	Reac	Silica	Sodiu	Sulpl	TDS	Hard	Lead	Alum	Alum	Arsei	Cadn	Chro	Chroi	Chro	Copp	Magr	Mang	Merc	Nicke	Phos	Selen	Zinc	Alkal	- 90 - 00	C15 -	j lī
FOI			mg/L mg/L 5 5	. mg/L 0.005	µg/L mg/			ng/L mg/L 0.05 0.005			ng/L mg/L µg, 0.05 0.005 50			mg/L mg 0.5 1	/L mg/L 0.5		mg/L mg	/L mg/L 0.001		mg/L 0.001		mg/L mg/ 0.0001 0.2	L mg/L 0.002			mg/L mg/L m 0.001 0.005 0.			mg/L 0.00005		mg/L mg/L 1	mg/L μg/L 0.002 20			ug/L µg/L 40 50		
ADW 2004			5 5	0.005	5 1	1.5	5 -100	0.05 0.005	50	005	3	0.002	100 50		0.5	10	5 5	0.001		0.001		0.0001 0.2	0.002	0.001	0.005	2 0.005 0.	005 0.1	0.001	0.00005			0.002 20	0.001	1	40 50	200 200	5
ANZECC 2000 ANZECC 2000				0.9		0.0	01		0.7									0.0034				0.0002	0.001		0.0274	0.0014		1.9	0.0006			0.011	0.008				
ANZECC 2000	Marine 95%			0.91														0.0044				0.0055	0.0044		0.0274	0.0013			0.0004	0.07			0.015				
Field_ID		Sampled_Date-Time	100 050		20 50			1.5		0.05	4.7. 0.5		00.000	250 45	~		T (0)	0.001	_	0.04	0.004	0.0004	0.000	0.004	0.00=		200 (2	0.45	0.00005		0.07	0.000 44.000	0.047		10 50		00 450
MW1 MW1		30/04/2011 20/09/2011	420 350 390 320		38 780 18 710		.5 -3	- 1.7	- <0	- 005		00 <0.002			0 - 0.5	2000	- 18	<0.001	- 1.8			<0.0001 200 <0.0001 170			<0.005		008 63	0.21	<0.00005	- <0.001	0.06 10 <	:0.002 14,000 :0.002 13,000		<1 ·	<40 <50	<200 <20	J0 <450
MW1		27/02/2012	370 300		<5 670	0.5		0.17 2			<0.05 2 210	00 <0.002	- 29,000		0 <0.5		- 22		3.6			<0.0001 180		< 0.001	-	- 4.2 <0			-		0.08 7.7 <	- 0.002	0.038	<1			
MW1 MW1		11/10/2012 6/03/2013	370 300 370 300		53 600 15 570			0.49 1.1 0.14 1.9			<0.05 1.1 150 0.08 1.9 200	0 0.003	32,000 - 32,000		0 <0.5		- 52	0 -	21			<0.0001 170 <0.0001 160		<0.001	-		009 51	0.038	-	<0.001	10 8.6 <		0.008	<1 <1			
MW1	MW1 1	17/04/2013	350 290	< 0.005	<5 560	0.4		0.15 2.2	9.7 0.0	022	0.07 2.2 240	0.004	- 33,000	270 12	0 <0.5	-	- 16		0.33	< 0.005	5 <0.001	0.0004 160) -	< 0.001		0.001 0.39 <0	0.005 49	0.087	-	< 0.001	0.02 8.2 <	:0.002 16,000	0.01	<1			
MW2 MW2		30/04/2011 20/09/2011	340 280 350 290		200 930 - E 120		.5 1	- 3.3 0.2 -	- <0	.005		0 0.004	- 26,000 - 24,000	570 17 610 21	0 - 0.5	2000	520 - - 19	<0.001	- 4.2			<0.0001 99 <0.0001 150		<0.001 <0.001	< 0.005		0.005 66 0.005 98	<0.005 - 0.005 0.001	< 0.00005			0.003 12,000		<1 ·	<40 <50	<200 <20	J0 <450
MW2 MW2	MW2 2 MW2 2	27/02/2012	350 290		<5 120 30 140			0.2 -	2.7 <0	-		0 0.004			0 <0.5	-	- 19		4.2			<0.0001 150 <0.0001 240		<0.001	-		.24 140		-			:0.002 11,000	0.021	<1			
MW2		11/10/2012	450 370		<5 130	0 0.5	-5	0.51 0.63	2.8 <0		<0.05 0.63 110	00 <0.002	25,000 -		0 <0.5		- 44	•	9.2		< 0.001	< 0.0001 160		< 0.001	-	- 12 <0	0.005 94	0.01	-	< 0.001	0.17 21 <	- 0.002	0.021	<1			-
MW2 MW2		6/03/2013 17/04/2013			<5 100 <5 110			0.1 0.6			<0.05 0.6 70 <0.05 0.51 72			580 17 610 20	0 <0.5		- 32		10		<0.001			<0.001 <0.001	-	- 15 <0 <0.001 5.2 <0	0.005 87		-		<0.01 21 <			<1			
MW3		30/04/2011	490 400	-	54 540		.5 1	- 1.9		.005	- 1.9 260		- 34,000	3400 80		9800	1500 -	< 0.001	5 -				< 0.002				0.025 300		< 0.00005			<0.01 16,000				<200 <20	200 <450
MW3		20/09/2011	530 450		57 370		2		-	-	- 0.033 22		- 32,000		0 <0.5	-	- 28	0 -	5.8			< 0.0005 85	-	< 0.005	-		0.025 210		-	< 0.005		<0.01 15,000	0.047	8			-
MW3 MW3		27/02/2012 11/10/2012	560 460 660 540		<5 400 12 420				1.4 <0 0.51 <0		<0.05 0.32 61 <0.05 0.12 33	0 <0.002			0 <0.5	-	- 23	0 -	6.5		<0.005	<0.0005 95 <0.001 100	-	<0.005 <0.01	-		0.025 210	0.026 0.027	-			<0.01 - <0.02 -	0.032	<1 <1			
MW3	MW3 6	6/03/2013	580 470	< 0.005	<5 590	0 1.4 <0	.5	0.16 0.26	1.1 <0		<0.05 0.26 42		- 36,000	3500 67	0 <0.5	-	- 18	-	5.8		5 <0.005			< 0.005	-	- 6.3 <0			-		1.6 130		<0.025	<1			-
MW3 MW4		17/04/2013 30/04/2011	680 560 630 510		770 2800			1.5 0.031		.005 <		00 0.006	- 30,000				- 47		14	0.072		<0.001 350		< 0.01	-	<0.01 21 0	.52 910		-		0.16 340	<0.02 14,000 <0.01 8700		<1 <1 ·			-
MW4 MW4	MW4 3 MW4 2	21/09/2011	420 370		740 390 18 250	0 - <0	.5 0	- 0.82 0.31 -	- <0	- 005		0 0.008	- 19,000		0 - 0.5	6700	- 67	<0.005	21			<0.0005 39 <0.0005 28	<0.002	<0.005 <0.005	< 0.005		0.025 100		<0.00005			<0.01 8700		<1 .	<40 <50	<200 <20	
MW4		28/02/2012	480 390		<5 320	0 0.6	-	0.59 0.17	0.74 <0	.005 <	<0.05 0.17 76						- 190		82		5 <0.005			< 0.005	-	- 130 <0	0.025 96	0.033	-	< 0.005	0.48 110	< 0.01 -	0.047	<1			
MW4 MW4		11/10/2012 6/03/2013	510 420 NOT SAMPI		<5 370 BLE TO ACCE		1	0.72 0.44	1.9 <0	.005 <	<0.05 0.44 120	0.007	19,000 -	2400 38	0 <0.5	-	- 290	- 00	65	< 0.01	<0.01	<0.001 69	-	< 0.01	-	- 130 <	0.05 150	0.041	-	<0.01	0.54 110	<0.02 -	0.012	<1			-
MW4		17/04/2013			<5 470			0.49 0.24	1 <0	.005 <	<0.05 0.24 73	0 0.01	- 23000	2600 44	0 <0.5	-	- 21	0 <0.005	5 4.4	0.031	<0.005	< 0.0005 94	-	< 0.005	-	<0.005 7.4 <.	.025 190	0.12	-	< 0.005	0.05 120	<0.01 11000	0.025	<1			
MW5 MW5	MW5 3 MW5 2	30/04/2011	450 370	-	56 87,00		.5 -1	- 1.1	- <0	.005		0.007	- 10,000		- 00	130,000	19,000 -	< 0.05	-	< 0.05		<0.005 100			< 0.005		0.25 4100		0.00011			<0.1 4900		<1 ·	<40 81	<200 <20	JO 281
MW5 MW5		21/09/2011 28/02/2012	250 210 180 150	- <0.005	47 87,00 <5 80,00			2.7 -	- 5.5 <0	005 <	- 0.02 270 <0.05 1.2 340	00 0.01		48,000 41 57,000 44	00 <0.5		- 110		11 18	<0.1		<0.01 110 <0.01 110		<0.1	-		0.5 4300 0.5 4700		-			<0.2 4600	<0.1	<1			
MW5	MW5 1	11/10/2012	200 160	0.75	620 77,00	00 0.3	-4	0.72 1.1	4.7 <0	.005 <	<0.05 1.1 180	0.005	8000 -	39,000 35	00 <0.5	-	- 260	- 00	31	< 0.05	< 0.05	< 0.005 970		< 0.05	-	- 37 <	0.25 3700	< 0.05	-	< 0.05	<0.01 1700	<0.1 -	< 0.05	<1			
MW5 MW5		6/03/2013 17/04/2013	210 170 210 170		1000 64,00 <5 58,00			2.1 1.3 1 1.6			<0.05 1.3 340 <0.05 1.6 260			36,000 38 33,000 33			- 66		16			<0.005 770 <0.05 740		<0.05	-		0.25 3000 0.25 2900		-		0.04 1500 0.16 1400			<1			
DUP01		30/04/2013	380 310	-	47 800			- 1.4		.005	- 1.4 200				0 -	2000	730 -	<0.001	-				0 <0.002		< 0.005		008 62		< 0.00005			0.002 14,000				<200 <20	200 <450
DUP01		11/10/2012	510 420		<5 390		-2		1.9 <0	.005 <		0.007			0 <0.5	-	- 400		74			<0.001 68		< 0.01	-		0.05 150		-			< 0.02 -	0.018	<1			-
DUP01 DUP01		21/09/2011 28/02/2012	270 220 200 170		42 87,00 <5 81,00			2.7 -	- 5.5 <0	-	- 0.02 270 <0.05 1.2 450	00 0.009	- 9700 - 9800		00 <0.5	-	- 100		11 18	<0.1		<0.01 110 <0.01 100		<0.1	-		0.5 4300 0.5 4300		-			<0.2 4500	<0.1	<1 <1			
DUP01	MW03 6	6/03/2013	580 470		<5 580	0 1.4 <0					<0.05 0.26 46	0 <0.002		3600 71	0 <0.5		- 18	•																			
DUP01 RIN 1		17/04/2013 30/04/2011	210 170	< 0.005	<5 5600	0 0.4		0.98 1.6	6.9 <0	.005 <	<0.05 1.6 250	00 0.012	- 13,000	33000 34	00 <0.5	-	- 140	0 <0.05		0.33		<0.05 740) -	<0.05	-		0.25 2900	<0.05 <0.001	-	< 0.05	0.16 1400	<0.1 6000		<1			
RIN01		21/09/2011	<5 <5	-	- <1		-100		-	-		-		<0.5 <	1 -	-		<0.001		-		<0.0001 <0.	2 -	< 0.001	-	<0.001 -	- <0.1		-	< 0.001	- <0.1		0.005	<1			
RIN01		28/02/2012	<5 <5		- <1		-	-	-	-		-			1 -	-		< 0.001		-		<0.0001 <0.		< 0.001			- 0.1		< 0.0001					<1	-		-
RIN01 RIN01		11/10/2012 6/03/2013	-5 -5 -5 -5		- <1 <1				-	-		-		<0.5 <	1 -	-		<0.001		-		<0.0001 <0.		<0.001	-	<0.001 - <0.001	- <0.1		<0.00005 <0.00005		- <0.1 <0.1		0.015	<1			
RIN01		17/04/2013	<5 <5		- <1				-	-		-			1 -		-	< 0.001		-		<0.0001 <0.		< 0.001	-	<0.001 -	- <0.1		< 0.0001		- <0.1		0.008	<1			-
Trip Blank		30/04/2011		-			-	-	-	-		-			-	-		< 0.001	-	< 0.001	1 <0.001	< 0.0001 -	-	< 0.001	-	<0	.005 -	< 0.001	< 0.00005	-	<	- :0.002	0.012		<40 -		-
TRIP01 TRIP01		21/09/2011 28/02/2012		-					-	-		-			-	-		-	-	-	-		-	-	-			-	-	-			-		<40 -		
TRIP02	2	21/09/2011		-			-		-	-		-			-	-		-	-	-	-		-	-	-			-	-	-			-		<40 -		
TRIPBLANK 1 TRIPBLANK 2		11/10/2012 11/10/2012		-			-		-	-		-			-	-		-	-	-	-		-	-	-			-	-	-			-	-		<200 <20 <200 <20	
TRIPBLANK	e	6/03/2013		-			-		-	-		-			-	-		-	-	-	-		-	-	-			-	-	-			-		<40	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ -
Trip Blank	1	17/04/2013		-			-		-	-		-			-	-		-	-	-	-		-	-	-			-	-	-			-		<40		
Statistical Sum			- 1 ·								- 1 - 2	-	,		- 1	r													1				1				
Number of Res Number of De			15 15	5	15 15 10 15	10 5	10	10 10 10 10	5 1	10	5 15 15 0 15 15	5 15	15	15 1	5 10 5 0	5	5 10 5 10) 5	10	15 9	15	15 15	5	15	5		15 15 2 15	15	5		15 15 15 15	15 10 1 10		15	5 5 0 1	5 5	5
Minimum Con	centration		180 150	< 0.005	<5 670	0.3 <0	.5 -6	0.17 0.17	0.74 <0	.005 <	<0.05 0.02 22	0 <0.002	9800	300 14	0 <0.5	2000	520 84	4 <0.001	1.8	0.002	< 0.001	<0.0001 28	< 0.002	< 0.001	<0.005	1.8 <0	0.005 53	0.001	<0.00005	< 0.001	0.03 7.7 <	:0.002 4600	0.01	<1 ·	<40 <50	<200 <20	
Minimum Dete	ect		180 150	0.036	18 670	0.3 N	D ND	0.17 0.17	0.74 N	VD	ND 0.02 22	0.003	9800	300 14	0 ND	2000	520 84	I ND	1.8	0.002	ND	ND 28	0.01	ND	ND	1.8 0.	.008 53	0.001	0.00011	ND	0.03 7.7	0.003 4600	0.01	8 1	ND 81	ND NI	D 281

Number of Kesults	15	15	5	15		.5	10 1	5 10	10	10	0 5	10	5	15	15	15		13	5	15	15	10	5	5	10	5	10	15	15	15	15	5	15	5		10	15	15	15	5	10	15
Number of Detects	15	15	1	10	1	15 3	10	0 10	0 10	10	0 5	0	0	15	15	11		1	5	15	15	0	5	5	10	0	10	9	0	0	15	1	0	0		10	2	15	13	1	0	15
Minimum Concentration	180	150	< 0.005	5 <5	6	70 0	.3 <1	0.5 -6			0.74			0.02	220	< 0.002	2	98	00	300	140	< 0.5	2000	520	84	< 0.001	1.8	0.002	< 0.001	< 0.0001	28	< 0.002	< 0.00	1 <0.005	1	.8	< 0.005	53	0.001	< 0.00005	< 0.001	0.0
Minimum Detect	180	150	0.036	18	6						17 0.74	ND	ND	0.02	220	0.003		98	00	300	140	ND	2000	520	84	ND	1.8	0.002	ND	ND	28	0.01	ND	ND	1	.8	0.008	53	0.001	0.00011	ND	0.0
Maximum Concentration	630	510	0.036	740	87	000 1	.5 <	0.5 2	2.7	3.	3 8.7	< 0.003	5 <0.05	3.3	5100	0.01			000 5				130000	19000) 1900	< 0.05	82	< 0.1	< 0.1	< 0.01	1100	0.01	< 0.1	< 0.005	1	30	< 0.5	4700	0.22	0.00011	< 0.1	0.7
Maximum Detect	630	510	0.036	740	87	000 1	.5 N		2.7	3.	3 8.7	ND	ND	3.3	5100	0.01		340	000 5	7000	5200	ND	130000	19000) 1900) ND	82	0.019	ND	ND	1100	0.01	ND	ND	1	30	0.24	4700	0.22	0.00011	ND	0.7
Maximum Detect + 10%	693	561	0.0396	814	95	700 1	.65 N	A 2.	2 2.97	7 3.6	53 9.57	NA	NA	3.63	5610	0.011		374	400 6	2700	5720	NA	143000	20900	2090) NA	90.2	0.0209	NA	NA	1210	0.011	NA	NA	1	43	0.264	5170	0.242	0.000121	NA	0.86
Average Concentration	415	343	0.0092	85	18	826 0	.71 0.	25 -0.	8 0.72	2 1.3	3 3.8	0.0025	5 0.025	1.2	2147	0.0051	l	229	913 1	1498	1223	0.25	30100	4460	625	0.0062	16	0.013	0.0095	0.00095		0.0028		5 0.0025		23	0.064	971	0.064	0.000042	0.011	0.1
Median Concentration	420	350	0.0025	30	32	200 0	.6 0.	25 0	0.28	5 1.1	15 2.7	0.0025	5 0.025	1.1	2100	0.006		240	000 2	2500	350	0.25	6700	760	255	0.0025	6.15	0.005	0.0025	0.00025	150	0.001	0.002	5 0.0025	5	7.1	0.0125	100	0.033	0.000025	0.0025	0.0
Standard Deviation	116	95	0.015	188	34	141 0	.41) 2.	5 0.93	3 0.9	94 3.3	0	0	1	1422	0.0032	2	853	30 2	0567	1763	0	55944	8138	630	0.011	24	0.017	0.018	0.0018	397	0.004	0.018	0	3	39	0.099	1763	0.075	0.000038	0.02	0.2
Number of Guideline Exceedances	0	0	0	0		0	1	5 0	0	0) 5	0	0	0	0	0		0)	0	6	0	0	0	0	3	0	0	3	9	0	5	0	0		0	0	0	0	0	2	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0		0	1	0 0	0	0) 5	0	0	0	0	0		0)	0	6	0	0	0	0	0	0	0	0	0	0	1	0	0		0	0	0	0	0	0	0

15	15	15	10	15	15	5	5	5	5	5
15	15	1	10	12	2	0	1	0	0	1
0.03	7.7	< 0.002	4600	0.01	<1	<40	<50	<200	<200	281
0.03	7.7	0.003	4600	0.01	8	ND	81	ND	ND	281
0.79	2100	< 0.2	16000	< 0.1	12	<40	81	<200	<200	<450
0.79	2100	0.003	16000	0.047	12	ND	81	ND	ND	281
0.869	2310	0.0033	17600	0.0517	13.2	NA	89.1	NA	NA	309.1
0.16	428	0.019	10670	0.031	1.8	20	36	100	100	236
0.08	90	0.005	11500	0.029	0.5	20	25	100	100	225
0.21	767	0.035	4077	0.014	3.4	0	25	0	0	25
0	0	3	0	15	0	0	0	0	0	0
0	0	0	0	12	0	0	0	0	0	0

March 2013 GME PE075425-1 Field Duplicates (WATER) SDG PE075425-1 Filter: SDG in('PE075425-1') Field_ID DUP01 RPD MW3 Sampled_Date-Time 6/03/2013 6/03/2013 Chem_Group ChemName Units EOL Acidity mg/L 5 54.0 45.0 18580.0 580.0 Inorganics Alkalinity (Bicarbonate) mg/l 0 Alkalinity (total) as CaCO3 mg/l 470.0 470.0 0 Ammonia mg/1 0.005 < 0.005 < 0.005 0 Ammonia as N µg/1 < 5.0 < 5.0 0 Chloride mg/l 5900.0 5800.0 2 mg/l 0.1 0 Fluoride 1.41.4 Hydrogen sulfide mg/1 0.5 < 0.5 < 0.5 0 Kjeldahl Nitrogen Total mg/1 0.05 0.16 0.2 22 Jitrate (as N) mg/1 0.005 0.26 0.26 0 Nitrate (as NO3-) mg/l 0.05 1.1 1.2 9 Nitrite (as N) mg/l 0.005 < 0.005 < 0.005 0 Nitrite (as NO2-) mg/l 0.05 < 0.05 < 0.05 0 Nitrogen (Total Oxidised) mg/l 0.005 0.26 0.26 0 420.0 9 Nitrogen (Total) µg/l 50 460.0 Reactive Phosphorus as P mg/1 0.002 40 0.003 < 0.002 Silica (Filtered) 36000.0 0 ug/1 50 mg/l 0.5 3500.0 3600.0 3 Sodium (Filtered) Sulphate 670.0 710.0 mg/l 1 6 < 0.5 < 0.5 0 Sulphide mg/l 0.5 TSS 180.0 180.0 0 mg/l Metals Aluminium (Filtered) mg/l 0.025 < 0.025 < 0.025 0 Aluminium mg/l 0.05 5.8 3.7 44 Arsenic (Filtered) mg/l 0.005 < 0.005 < 0.005 0 Cadmium (Filtered) mg/l 0.0005 < 0.0005 < 0.0005 0 Calcium (Filtered) mg/1 0.2 130.0 130.0 0 Chromium (III+VI) (Filtered) mg/1 0.005 < 0.005 < 0.005 0 Iron (Filtered) mg/1 0.025 < 0.025 < 0.025 0 mg/l 0.05 50 3.8 Iron 6.3 Magnesium (Filtered) mg/l 0.1 340.0 340.0 0 mg/1 0.005 0.018 0.017 Manganese (Filtered) 6 mg/l 0.005 < 0.005 0 Nickel (Filtered) < 0.005 1.6 < 0.01 198 Phosphorus mg/l 0.01 Potassium (Filtered) 130.0 130.0 0 mg/1 0.1 elenium (Filtered) mg/l 0.01 < 0.01 < 0.01 0 µg/1 20 Bilicon (Filtered) 17000.0 17000.0 0 Zinc (Filtered) mg/l 0.025 < 0.025 < 0.025 0 Organic Alkalinity (Carbonate) mg/l 1 *RPDs have only been considered where a concentration is greater than 0 times the EQL 1 <1.0 0 <1.0

**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: $50(0-10 \times EQL)$; $30(10-30 \times EQL)$; $30(> 30 \times E$ x EOL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Field Duplicates (Filter: SDG in('PE(SDG Field_ID Sampled_Date-Time	PE076727-1 MW05 17/04/2013	PE076727-1 DUP01 17/04/2013	RPE
Chem_Group	ChemName	Units	EQL		[T
	Acidity	mg/L	5	58.0	57.0	2
. .	411 1: 'r (D' 1 r)	/1	-	210.0	210.0	
Inorganics	Alkalinity (Bicarbonate)	mg/l	5	210.0	210.0	0
	Alkalinity (total) as CaCO3	mg/l	5	170.0	170.0	0
	Ammonia	mg/l	0.005	< 0.005	< 0.005	0
	Ammonia as N	µg/l	5	<5.0	<5.0	0
	Chloride	mg/l	1	58000.0	56000.0	4
	Fluoride	mg/l	0.1	0.4	0.4	0
	Kjeldahl Nitrogen Total	mg/l	0.05	1.0	0.98	2
	Nitrate (as N)	mg/l	0.005	1.6	1.6	0
	Nitrate (as NO3-)	mg/l	0.05	6.9	6.9	0
	Nitrite (as N)	mg/l	0.005	< 0.005	< 0.005	0
	Nitrite (as NO2-)	mg/l	0.05	<0.05	< 0.05	0
	Nitrogen (Total Oxidised)	mg/l	0.005	1.6	1.6	0
	Nitrogen (Total)	µg/l	50	2600.0	2500.0	4
	Reactive Phosphorus as P	mg/l	0.002	0.014	0.012	15
	Silica (Filtered)	µg/l	500	13000.0	13000.0	0
	Sodium (Filtered)	mg/l	5	33000.0	33000.0	0
	Sulphate	mg/l	1	3300.0	3400.0	3
	Sulphide	mg/l	0.5	< 0.5	< 0.5	0
	TSS	mg/l	5	1600.0	1400.0	13
Lead	Lead (Filtered)	mg/l	0.05	<0.05	< 0.05	0
Metals	Aluminium (Filtered)	mg/l	0.25	0.3	0.33	10
	Aluminium	mg/l	0.1	33.0	30.0	10
	Arsenic (Filtered)	mg/l	0.05	< 0.05	< 0.05	0
	Cadmium (Filtered)	mg/l	0.005	< 0.005	< 0.005	0
	Calcium (Filtered)	mg/l	2	740.0	740.0	0
	Chromium (III+VI) (Filtered)	mg/l	0.05	< 0.05	< 0.05	0
	Copper (Filtered)	mg/l	0.05	< 0.05	< 0.05	0
	Iron (Filtered)	mg/l	0.25	< 0.25	< 0.25	0
	Iron	mg/l	0.1	44.0	41.0	7
	Magnesium (Filtered)	mg/l	1	2900.0	2900.0	0
	Manganese (Filtered)	mg/l	0.05	< 0.05	< 0.05	0
	Nickel (Filtered)	mg/l	0.05	< 0.05	< 0.05	0
	Phosphorus	mg/l	0.01	0.16	0.16	0
	Potassium (Filtered)	mg/l	1	1400.0	1400.0	0
	Selenium (Filtered)	mg/l	0.1	<0.1	<0.1	0
	Silicon (Filtered)	µg/l	200	6000.0	6000.0	0
	Zinc (Filtered)	mg/l	0.25	<0.25	<0.25	0
			T			1
Organic	Alkalinity (Carbonate)	mg/l	1	<1.0	<1.0	0

 Organic
 Alkalinity (Carbonate)
 mg/l
 1
 <1.0</th>
 <1.0</th>

 "RPDs have only been considered where a concentration is greater than 0 times the EQL.
 ***High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 50 (0-10 x EQL); 30 (10-30 x EQL); 30 (> 30 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Annex C

LABORATORY ANALYTICAL REPORTS

ERN	Sydney Melbourne Brisbane Perth Hunter Valley North Coast	Lev Lev Lev y 53	vel 3, Yarra vel 1, 60 Lei vel 6, Grain Bonville Ave	Tower, WTC chhardt Stre Pool Bld, 17 anue, Thornt	, 18-3 eet, Sp 2 St 0 ton, N	8 Sidde oring Hil Georges SW, 23	eley Str II, QLD S Tce, V 22. (ph	reet, E), 4004 WA, 68 n) 02 4	Dockland 4. (ph) 0 850. (ph 1964 215	02 8584 8888 is, VIC, 3005. 7 3839 8393) 08 9321 520 50 (fax) 02 44) 02 6584 715	(ph) 03 (fax) 0 0 (fax 964 21	3 9696 7 3839 () 08 93 52	8011 8381 821 52	(fax) (62	03 969	6 8022	Pr Pr Pr	oject oject oject	t Nar t Loc t Mai	nager:	BUN	rup z Ei	kates dajell c. mair		COC Number A 07500 Laboratory SGS
General Ana	alysis Requirements								Y	'es (tick)				ist)	List)										Other Comments on sample
	ind Time (please tick		2 Days	3 Days	s 🖬	Vormal	TAT)							260 L	8270					ed / total)		BLANK			(eg: high voc, highly contaminated, special detection limits etc etc)
2. Do you w	ish any sediment lay	vers in wate	er to be exlu	uded from e	extrac	tions?						+ F		PA 8	EPA	s				ed / t	; 12	A			limits etc etc)
3. Additional	I QA/QC reported wi	here sampl	e batches a	are < 10 sai	mples	?		_				36)	Hd	USE	I (US	ticide				solve	T	10			
4. % of extra	aneous material rem	oved from	samples to	be reported	-						_	29-00 210-00	ted T	can	Scar	Pes		s		(dis	Y	2			
Laboratory Number	Sample ID	Sample Depth	Sample Date	Sample Time		Atrix Other			vation Other	Containers (number/type)		TPH (C6-C9 P & T) TPH (C10-C36)	Speciated TPH	VOC Scan (USEPA 8260 List)	SVOC Scan (USEPA 8270 List	OC OP Pesticides	PAH	Phenols	PCB	Metals* (dissolved / total)	Dink	18.6			PE075425
1	MWI		6-3-13			X	X			58														10	
2	and the second second second		i			1	Î														X				
2	MW2										-	-	-	-	-	-			-	K					
3	MW3										_	-	-			-					$\mathbf{\lambda}$			-	
12k	mw4																				\mathbf{X}				
54	MWS					Τ				1											\times				-
85											+									S	/				
	9										+		-		-	-			-						
XP	RINOI									20	_	_	-	-	-	-			-						
87	ruphanki		V			V	V			IV												X		-	
				-												ĺ.									
							-					-	+	+					1						
							-					-	-	+	-	-			-						
		-							_				-		-				-		_				
							_					-	-					1							
			ļ				-		_		+	-	-	-	-	-	-	+	-						
											_			-	-				-		_	_			
												-													
							-				-		-	-			-	-							
											-	-	-	-	-		-								
	Atta: Heid	e Me	eilke	U																					
Comments:	Ref quote	: EN	V1120	4146.	. P	5 5	iend	lr	esul	tski	nvc	ACR.		Câ	jerra je	l.g.	ede	all	So	ern.	Com	*Metals As Cd	(circle) I Cr Cu Hg Ni Pb .	Zn	
Relinquished	by: C. Go(Man		Signed	d:	m	i l	he	IM	201	Date	/Time:			0			1	~	Recei	ved by:	Alen	Dickinson	Date	Time: 7/3/13 12:50
Relinquished	by:			Signed	-			0			Date	/Time:								Recei	ived by			Date	/Time:

AUSTRALIA-ENVIRONMENTAL-PERTH AIRPORT- PROFORMA -QU101

REGISTRATION DETAILS

APPROVED BY: R. MA

Bottle Map Sample Numbers:		Plastic	500mL Plastic Purple	Amber	Plastic	Plastic	Amber	Amber	100mL Amber Green	Glass Vial	Glass Vial	Plastic	Plastic	Glass Jar	1L Plastic Yellow		Ziplock Bag/ Other	Job Number: PEO 75425
×6 &7		×			ľ	1				1						- 200		# of Eskies: 1Esky
1-5 Registration comm	1				1	2												IB /-ICE / None Temp: <u>14.6</u> °C Tray Numbers: W-319- 320 V-9
₩MW4	botts					Ŋ.						on Tak			-			
											Regis	stered	Ву:		02	5 7	13/13	

SAMPLE RECEIPT ADVICE

- CLIENT DETAILS -		LABORATORY DETAILS _	
Contact	Joe Edgell	Manager	Ros Ma
Client	ERM Australia Pty Ltd	Laboratory	SGS Newburn Environmental
Address	PO Box 7338 Cloisters Square Level 6, Grain Pool Bld, 172 St Georges Tce PERTH WA 6850	Address	10 Reid Rd Newburn WA 6105
Telephone	08 9321 5200	Telephone	(08) 9373 3500
Facsimile	08 9321 5262	Facsimile	(08) 9373 3556
Email	(Not specified)	Email	au.environmental.perth@sgs.com
Project	0086269 Burrup Nitrates	Samples Received	Thu 7/3/2013
Order Number	A07500	Report Due	Thu 14/3/2013
Samples	7	SGS Reference	PE075425

SUBMISSION DETAILS

This is to confirm that 7 samples were received on Thursday 7/3/2013. Results are expected to be ready by Thursday 14/3/2013. Please quote SGS reference PE075425 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix	7 Water	Type of documentation received	COC
Date documentation received	7/3/2013	Samples received in good order	Yes
Samples received without headspace	Yes	Sample temperature upon receipt	15°C
Sample container provider	SGS	Turnaround time requested	Standard
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes
Complete documentation received	Yes	Number of eskies/boxes received	1

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS _

Sample bottles labelled MW4 received empty.

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services 10 Reid Rd PO Box 32

d Newburn WA 6105 2 Welshpool WA 6983 Australia Australia t +61 8 9373 3500 f +61 8 9373 3556

www.au.sgs.com

CLIENT DETAILS _

SAMPLE RECEIPT ADVICE

0086269 Burrup Nitrates

ERM Australia Pty Ltd Client Project SUMMARY OF ANALYSIS Ne

No.	Sample ID	Acidity and Free CO2	Alkalinity	Chloride by Discrete Analyser in Water	Colour by Discrete Analyser	Fluoride by Ion Selective Electrode in Water	Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA	Sulphate in water	Sulphide by Titration in Water	Total and Volatile Suspended Solids (TSS /
001	MW1	1	3	1	1	1	5	1	2	1
002	MW2	1	3	1	1	1	5	1	2	1
003	MW3	1	3	1	1	1	5	1	2	1
004	MW5	1	3	1	1	1	5	1	2	1
005	DUP01	1	3	1	1	1	5	1	2	1
006	RIN01	-	3	1	-	-	-	1	-	-

CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction.

SAMPLE RECEIPT ADVICE

- CLIENT DETAILS -

Client

ERM Australia Pty Ltd

Project

0086269 Burrup Nitrates

SUMMARY	OF	ANALYSIS	
---------	----	----------	--

No.	Sample ID	Filterable Reactive Phosphorus (FRP)	Low Level Ammonia Nitrogen by FIA	Mercury (dissolved) in Water	Metals in Water (Dissolved) by ICPOES	TKN Kjeldahl Digestion by Discrete Analyser	Total Phosphorus by Kjeldahl Digestion DA in	Trace Metals (Dissolved) in Water by ICPMS	Trace Metals (Total) in Water by ICPMS	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	MW1	1	2	-	6	2	1	9	2	-	-
002	MW2	1	2	-	6	2	1	9	2	-	-
003	MW3	1	2	-	6	2	1	9	2	-	-
004	MW5	1	2	-	6	2	1	9	2	-	-
005	DUP01	1	2	-	6	2	1	9	2	-	-
006	RIN01	-	-	1	4	-	-	7	-	-	-
007	Trip Blank	-	-	-	-	-	-	-	-	11	5

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction.

- CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Joe Edgell	Manager	Ros Ma
Client	ERM Australia Pty Ltd	Laboratory	SGS Newburn Environmental
Address	PO Box 7338 Cloisters Square Level 6, Grain Pool Bld, 172 St Georges Tce PERTH WA 6850	Address	10 Reid Rd Newburn WA 6105
Telephone	08 9321 5200	Telephone	(08) 9373 3500
Facsimile	08 9321 5262	Facsimile	(08) 9373 3556
Email	(Not specified)	Email	au.environmental.perth@sgs.com
Project	0086269 Burrup Nitrates	SGS Reference	PE075425 R0
Order Number	A07500	Report Number	0000057055
Samples	7	Date Reported	15 Mar 2013
		Date Received	07 Mar 2013

COMMENTS .

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(898/20210).

Samples were diluted due to high conductivity for metals. Hence the LORs were raised.

Total AI and Fe spike recoveries for "MW1" were outside acceptance criteria due to high background.

SIGNATORIES .

Mary

Dale Lang Organics Team Leader

Uu

Lien Tang Project Manager

Hue Thanh Ly Metals Supervisor

lan

Michael McKay Inorganic Team Leader - Waters

Desmond

Leanne Orsmond Inorganics Coordinator

Ohmar David Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services 10 Reid Rd PO Box 32

d Newburn WA 6105 2 Welshpool WA 6983 Australia t +61 Australia

t +61 8 9373 3500 f +61 8 9373 3556

www.au.sgs.com

PE075425 R0

	Sa	nple Number ample Matrix Sample Date ample Name	PE075425.001 Water 06 Mar 2013 MW1	PE075425.002 Water 06 Mar 2013 MW2	PE075425.003 Water 06 Mar 2013 MW3	PE075425.004 Water 06 Mar 2013 MW5
Parameter	Units	LOR				
Total and Volatile Suspended Solids (TSS / VSS) Method: Al	N114					
Total Suspended Solids Dried at 105°C	mg/L	5	2900	320	180	660
Acidity and Free CO2 Method: AN140						
Acidity to pH 8.3	mg CaCO3/L	5	210	63	54	130
Alkalinity Method: AN135						
Total Alkalinity as CaCO3	mg/L	5	300	360	470	170
Carbonate Alkalinity as CO3	mg/L	1	<1	<1	<1	<1
Bicarbonate Alkalinity as HCO3	mg/L	5	370	440	580	210
Colour by Discrete Analyser Method: AN285						
Colour (True)	Hazen	1	<1	<1	<1	<1
Fluoride by Ion Selective Electrode in Water Method: AN141						
Fluoride by ISE	mg/L	0.1	0.5	0.6	1.4	0.4
Chloride by Discrete Analyser in Water Method: AN274						
Chloride	mg/L	1	570	1000	5900	64000
Sulphate in water Method: AN275						
Sulphate	mg/L	1	100	170	670	3800
Sulphide by Titration in Water Method: AN149						
Sulphide	mg/L	0.5	<0.5	<0.5	<0.5	<0.5
Hydrogen Sulphide at 20 C	mg/L	0.5	<0.5	<0.5	<0.5	<0.5
Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA Method: A	AN258					
Nitrate, NO ₃ as NO ₃	mg/L	0.05	<0.05	2.7	1.1	6.0
Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.005	1.9	0.60	0.26	1.3
Nitrite Nitrogen, NO ₂ as N	mg/L	0.005	0.025	<0.005	<0.005	<0.005
Nitrate Nitrogen, NO ₃ as N	mg/L	0.005	1.9	0.60	0.26	1.3
Nitrite, NO ₂ as NO ₂	mg/L	0.05	0.08	<0.05	<0.05	<0.05

PE075425 R0

Sample Number PE075425.001 PE075425.002 PE075425.003 PE075425.004

	:	Sample Number Sample Matrix Sample Date Sample Name	Water 06 Mar 2013 MW1	Water 06 Mar 2013 MW2	Water 06 Mar 2013 MW3	Water 06 Mar 201 MW5
Parameter	Units	LOR				
Low Level Ammonia Nitrogen by FIA Method: AN261						
Ammonia Nitrogen, NH ₃ as N	mg/L	0.005	0.015	<0.005	<0.005	1.0
mmonia, NH ₃	mg/L	0.005	0.018	<0.005	<0.005	1.2
TKN Kjeldahl Digestion by Discrete Analyser Method: A	N281					
Fotal Kjeldahl Nitrogen	mg/L	0.05	0.14	0.10	0.16	2.1
otal Nitrogen (calc)	mg/L	0.05	2.0	0.70	0.42	3.4
Fotal Phosphorus by Kjeldahl Digestion DA in Water M	ethod: AN279/AN2	93				
otal Phosphorus (Kjeldahl Digestion)	mg/L	0.01	<0.01	<0.01	1.6	0.04
ilterable Reactive Phosphorus (FRP) Method: AN278 ilterable Reactive Phosphorus Interable Reactive Phosphorus	mg/L	0.002	0.003	<0.002	0.003	0.007
Metals in Water (Dissolved) by ICPOES Method: AN320)/AN321					
Calcium, Ca	mg/L	0.2	160	150	130	770
lagnesium, Mg	mg/L	0.1	49	87	340	3000
otassium, K	mg/L	0.1	8.2	21	130	1500
ilica, Soluble	mg/L	0.05	32	27	36	13
ilicon, Si	mg/L	0.02	15	13	17	5.9
Sodium, Na	mg/L	0.5	280	580	3500	36000
	1	· · · · · · · · · · · · · · · · · · ·				
	N318					
race Metals (Dissolved) in Water by ICPMS Method: A	N318 µg/L	5	<5	6	<25↑	<250↑
Trace Metals (Dissolved) in Water by ICPMS Method: A		5	<5 <1	6 <1	<25↑ <5↑	<250↑ <50↑
Trace Metals (Dissolved) in Water by ICPMS Method: A Juminium, Al Irsenic, As	μg/L					
race Metals (Dissolved) in Water by ICPMS Method: A luminium, Al rsenic, As admium, Cd hromium, Cr	μg/L μg/L μg/L μg/L	1 0.1 1	<1 <0.1 <1	<1	<5↑	<50↑
irace Metals (Dissolved) in Water by ICPMS Method: A luminium, Al rsenic, As admium, Cd hromium, Cr opper, Cu	μg/L μg/L μg/L μg/L μg/L	1 0.1 1 1	<1 <0.1 <1 -	<1 <0.1 <1 -	<51 <0.51 <51 -	<50↑ <5.0↑ <50↑ -
Trace Metals (Dissolved) in Water by ICPMS Method: A Juminium, Al rsenic, As cadmium, Cd chromium, Cr copper, Cu on, Fe	μg/L μg/L μg/L μg/L μg/L μg/L	1 0.1 1 1 5	<1 <0.1 <1 - <5	<1 <0.1 <1 - <5	<51 <0.51 <51 - <251	<50↑ <5.0↑ <50↑ - <250↑
race Metals (Dissolved) in Water by ICPMS Method: A luminium, Al rsenic, As admium, Cd hromium, Cr opper, Cu on, Fe ead, Pb	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 0.1 1 1 5 1	<1 <0.1 <1 - <5 -	<1 <0.1 <1 - <5 -	<51 <0.51 <51 - <251 -	<50↑ <5.0↑ <50↑ - <250↑ -
irace Metals (Dissolved) in Water by ICPMS Method: A luminium, Al rsenic, As admium, Cd hromium, Cr opper, Cu on, Fe ead, Pb langanese, Mn	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 0.1 1 5 1 1 1 1	<1 <0.1 - <5 - 170	<1 <0.1 <1 - <5 - 12	<51 <0.51 <51 - <251 - - 18	<50 t <5.0 t <50 t - <250 t - <50 t
irace Metals (Dissolved) in Water by ICPMS Method: A luminium, Al rsenic, As admium, Cd hromium, Cr opper, Cu opn, Fe ead, Pb langanese, Mn ickel, Ni	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 0.1 1 5 1 1 1 1 1 1 1	<1 <0.1 - - - - - 170 <1	<1 <0.1 <1 - <5 - 12 <1	<51 <0.51 <51 - <251 - 18 <51	<50 t <5.0 t <50 t - <250 t - <50 t <50 t
race Metals (Dissolved) in Water by ICPMS Method: A luminium, Al rsenic, As admium, Cd hromium, Cr opper, Cu on, Fe sad, Pb anganese, Mn ickel, Ni elenium, Se	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 0.1 1 5 1 1 5 1 1 2	<1 <0.1 <1 - <5 - 170 <1 <2	<1 <0.1 <1 - <5 - 12 <1 <2	<51 <0.51 <51 - <251 - 18 <51 <101	<501 <5.01 - <2501 - - <501 <501 <1001
Trace Metals (Dissolved) in Water by ICPMS Method: A Juminium, Al rsenic, As admium, Cd chromium, Cr copper, Cu on, Fe ead, Pb tanganese, Mn lickel, Ni elenium, Se inc, Zn	μg/L μg/L	1 0.1 1 5 1 1 1 1 1 1 1	<1 <0.1 - - - - - 170 <1	<1 <0.1 <1 - <5 - 12 <1	<51 <0.51 <51 - <251 - 18 <51	<50 t <5.0 t - <250 t - <50 t <50 t
Trace Metals (Dissolved) in Water by ICPMS Method: A Aluminium, Al Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu ron, Fe Lead, Pb Manganese, Mn Vickel, Ni Selenium, Se Zinc, Zn	μg/L μg/L	1 0.1 1 5 1 1 5 1 1 2	<1 <0.1 <1 - <5 - 170 <1 <2	<1 <0.1 <1 - <5 - 12 <1 <2	<51 <0.51 <51 - <251 - 18 <51 <101	<50 t <5.0 t - <250 t - - <50 t <50 t <50 t

Mercury mg/L 0.0005 - - - -

PE075425 R0

	S	Sample Number Sample Matrix Sample Date Sample Name	PE075425.001 Water 06 Mar 2013 MW1	PE075425.002 Water 06 Mar 2013 MW2	PE075425.003 Water 06 Mar 2013 MW3	PE075425.004 Water 06 Mar 2013 MW5
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Water Method: AN433/AN	1434/AN410)				
TRH C6-C9	µg/L	40	-	-	-	-
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	-	-	-	-
d4-1,2-dichloroethane (Surrogate)	%	-	-	-	-	-
d8-toluene (Surrogate)	%	-	-	-	-	-
Bromofluorobenzene (Surrogate)	%	-	-	-	-	-
VOCs in Water Method: AN433/AN434 Monocyclic Aromatic Hydrocarbons Benzene	µg/L	0.5		-	-	-
Toluene	μg/L	0.5	-	-	-	-
Ethylbenzene	µg/L	0.5	-	-	-	-
m/p-xylene	µg/L	1	-	-	-	-
o-xylene	µg/L	0.5	-	-	-	-
Oxygenated Compounds						
MtBE (Methyl-tert-butyl ether)	µg/L	0.5	-	-	-	-
Polycyclic VOCs						
Naphthalene	µg/L	0.5	-	-	-	-
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	-	-	-	-
d4-1,2-dichloroethane (Surrogate)	%	-	-	-	-	-
d8-toluene (Surrogate)	%	-	-	-	-	-
Bromofluorobenzene (Surrogate)	%	-	-	-	-	-

	S	nple Number ample Matrix Sample Date Sample Name	PE075425.005 Water 06 Mar 2013 DUP01	PE075425.006 Water 06 Mar 2013 RIN01	PE075425.007 Water 06 Mar 2013 Trip Blank
Parameter	Units	LOR			
Total and Volatile Suspended Solids (TSS / VSS) Method: A	AN114				
Total Suspended Solids Dried at 105°C	mg/L	5	180	-	-
Acidity and Free CO2 Method: AN140			I		
Acidity to pH 8.3	mg CaCO3/L	5	45	-	-
Alkalinity Method: AN135					
Total Alkalinity as CaCO3	mg/L	5	470	<5	-
Carbonate Alkalinity as CO3	mg/L	1	<1	<1	-
Bicarbonate Alkalinity as HCO3	mg/L	5	580	<5	-
Colour by Discrete Analyser Method: AN285					
Colour (True)	Hazen	1	<1	_	_
Fluoride by Ion Selective Electrode in Water Method: AN14 Fluoride by ISE Chloride by Discrete Analyser in Water Method: AN274	mg/L	0.1	1.4	-	-
Chloride by Discrete Analyser in Water Method: AN274			5000		
Chloride	mg/L	1	5800	<1	-
Sulphate in water Method: AN275					
Sulphate	mg/L	1	710	<1	-
Sulphide by Titration in Water Method: AN149					
Sulphide	mg/L	0.5	<0.5	-	-
Hydrogen Sulphide at 20 C	mg/L	0.5	<0.5	-	-
Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA Method:	AN258				
Nitrate, NO ₃ as NO ₃	mg/L	0.05	1.2	-	-
Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.005	0.26	-	-
Nitrite Nitrogen, NO₂ as N	mg/L	0.005	<0.005	-	-
Nitrate Nitrogen, NO ₃ as N	mg/L	0.005	0.26	-	-
Nitrite, NO ₂ as NO ₂	mg/L	0.05	<0.05	-	-

PE075425 R0

	S	nple Number ample Matrix Sample Date Sample Name	PE075425.005 Water 06 Mar 2013 DUP01	PE075425.006 Water 06 Mar 2013 RIN01	PE075425.00 Water 06 Mar 2013 Trip Blank
Parameter	Units	LOR			
Low Level Ammonia Nitrogen by FIA Method: AN261					
Ammonia Nitrogen, NH₃ as N	mg/L	0.005	<0.005	-	-
Ammonia, NH₃	mg/L	0.005	<0.005	-	-
TKN Kjeldahl Digestion by Discrete Analyser Method: AN28	1				
Total Kjeldahl Nitrogen	mg/L	0.05	0.20	-	-
Total Nitrogen (calc)	mg/L	0.05	0.46	-	-
Total Phosphorus by Kjeldahl Digestion DA in Water Method	1: AN279/AN29	3			
Total Phosphorus (Kjeldahl Digestion)	mg/L	0.01	<0.01	-	_
Metals in Water (Dissolved) by ICPOES Method: AN320/AN3	21				
Metals in Water (Dissolved) by ICPOES Method: AN320/AN3	121 mg/L	0.2	130	<0.2	-
Calcium, Ca		0.2	130 340	<0.2 <0.1	-
Calcium, Ca Magnesium, Mg	mg/L				
Calcium, Ca Magnesium, Mg Potassium, K	mg/L mg/L	0.1	340	<0.1	-
Calcium, Ca Magnesium, Mg Potassium, K Silica, Soluble	mg/L mg/L mg/L	0.1	340 130	<0.1	-
	mg/L mg/L mg/L mg/L	0.1 0.1 0.05	340 130 36	<0.1 <0.1	-
Calcium, Ca Magnesium, Mg Potassium, K Silica, Soluble Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318	mg/L mg/L mg/L mg/L mg/L mg/L	0.1 0.1 0.05 0.02 0.5	340 130 36 17 3600	<0.1 <0.1 - - <0.5	
Calcium, Ca Magnesium, Mg Potassium, K Silica, Soluble Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318	mg/L mg/L mg/L mg/L mg/L μg/L	0.1 0.1 0.05 0.02 0.5	340 130 36 17 3600	<0.1 <0.1 -	- - -
Calcium, Ca Magnesium, Mg Potassium, K Silica, Soluble Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al	mg/L mg/L mg/L mg/L mg/L μg/L μg/L	0.1 0.1 0.05 0.02 0.5	340 130 36 17 3600	<0.1 <0.1 - - <0.5	- - - - -
Calcium, Ca Magnesium, Mg Potassium, K Silica, Soluble Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al Arsenic, As Cadmium, Cd	mg/L mg/L mg/L mg/L mg/L mg/L μg/L μg/L	0.1 0.1 0.05 0.02 0.5 5 1	340 130 36 17 3600 <251	<0.1 <0.1 - - <0.5	- - - - - -
Calcium, Ca Magnesium, Mg Potassium, K Silica, Soluble Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al Aluminium, Al Arsenic, As Cadmium, Cd Chromium, Cr	mg/L mg/L mg/L mg/L mg/L mg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.05 0.02 0.5 5 1 0.1	340 130 36 17 3600 251 <51	<0.1 <0.1 - - <0.5 - <1 <0.1	- - - - - - - - - -
Calcium, Ca Magnesium, Mg Potassium, K Silica, Soluble Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al Aluminium, Al Assenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/L mg/L mg/L mg/L mg/L mg/L μg/L μg/L	0.1 0.1 0.05 0.02 0.5 5 1 0.1 1	340 130 36 17 3600 <251	<0.1 <0.1 - - <0.5 - <1 <0.1 <1	- - - - - - - - - - - -
Calcium, Ca Magnesium, Mg Potassium, K Silica, Soluble Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Na Aluminium, Al Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu ron, Fe	mg/L mg/L mg/L mg/L mg/L mg/L μg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.05 0.02 0.5 5 1 0.1 1 1 1	340 130 36 17 3600 <251	<0.1 <0.1 - - <0.5 - <1 <0.1 <1 <1 <1	- - - - - - - - - - - - - - - - -
Calcium, Ca Magnesium, Mg Potassium, K Silica, Soluble Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al Aluminium, Al Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu ron, Fe Lead, Pb	mg/L mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.1 0.1 0.05 0.02 0.5	340 130 36 17 3600 <251	<0.1 <0.1 <0.1 <	- - - - - - - - - - - - - - - - - - -
Calcium, Ca Magnesium, Mg Potassium, K Silica, Soluble Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al Aluminium, Al Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu ron, Fe Lead, Pb Manganese, Mn	mg/L mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µ	0.1 0.1 0.05 0.02 0.5 5 1 0.1 1 5 1 1 5 1 1 1 5 1	340 130 36 17 3600 	<0.1 <0.1 <0.1 <	- - - - - - - - - - - - - - - - - - -
Calcium, Ca Magnesium, Mg Potassium, K Silica, Soluble Silicon, Si Sodium, Na	mg/L µg/L µg/L	0.1 0.1 0.05 0.02 0.5 5 1 0.1 1 5 1 1 5 1 1 1 1 1 1 1 1 1 1 1	340 130 36 17 3600 <251	<0.1 <0.1 <0.1 <	- - - - - - - - - - - - - - - - - - -

Trace Metals (Total) in Water by ICPMS Method: AN318

Total Aluminium	µg/L	5	3700	-	-
Total Iron	µg/L	5	3800	-	-

PE075425 R0

	s	mple Number sample Matrix Sample Date Sample Name	PE075425.005 Water 06 Mar 2013 DUP01	PE075425.006 Water 06 Mar 2013 RIN01	PE075425.007 Water 06 Mar 2013 Trip Blank
Parameter	Units	LOR			
Mercury (dissolved) in Water Method: AN311/AN312					
Mercury	mg/L	0.00005	-	<0.00005	-
Volatile Petroleum Hydrocarbons in Water Method: AN433/A	AN434/AN410				
TRH C6-C9	µg/L	40	-	-	<40
Surrogates					
Dibromofluoromethane (Surrogate)	%	-	-	-	102
d4-1,2-dichloroethane (Surrogate)	%	-	-	-	102
d8-toluene (Surrogate)	%	-	-	-	100
Bromofluorobenzene (Surrogate)	%	-	-	-	97
Maria and the Assess of the Landscare data and					
Benzene	µg/L ua/L	0.5	-	-	<0.5
Benzene Toluene	µg/L	0.5			<0.5 <0.5 <0.5
Benzene Toluene Ethylbenzene		0.5	-	-	<0.5
Monocyclic Aromatic Hydrocarbons Benzene Toluene Ethylbenzene m/p-xylene o-xylene	μg/L μg/L	0.5	-	-	<0.5 <0.5
Benzene Toluene Ethylbenzene m/p-xylene	μg/L μg/L μg/L	0.5 0.5 1	-	-	<0.5 <0.5 <1
Benzene Toluene Ethylbenzene m/p-xylene o-xylene Oxygenated Compounds	μg/L μg/L μg/L	0.5 0.5 1	-	-	<0.5 <0.5 <1
Benzene Toluene Ethylbenzene m/p-xylene o-xylene	μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5	- - -	- - -	<0.5 <0.5 <1 <0.5
Benzene Toluene Ethylbenzene m/p-xylene o-xylene Oxygenated Compounds MtBE (Methyl-tert-butyl ether)	μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5	- - -	- - -	<0.5 <0.5 <1 <0.5
Benzene Toluene Ethylbenzene m/p-xylene o-xylene Oxygenated Compounds MtBE (Methyl-tert-butyl ether) Polycyclic VOCs	μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5 0.5	- - -		<0.5 <0.5 <1 <0.5 <0.5
Benzene Toluene Ethylbenzene m/p-xylene o-xylene Oxygenated Compounds MtBE (Methyl-tert-butyl ether) Polycyclic VOCs Naphthalene	μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5 0.5	- - -		<0.5 <0.5 <1 <0.5 <0.5
Benzene Toluene Ethylbenzene m/p-xylene p-xylene Oxygenated Compounds MtBE (Methyl-tert-butyl ether) Polycyclic VOCs Naphthalene Surrogates	µg/L µg/L µg/L µg/L µg/L	0.5 0.5 1 0.5 0.5 0.5	- - - -	- - - - -	<0.5 <0.5 <1 <0.5 <0.5
Benzene Toluene Ethylbenzene m/p-xylene p-xylene Oxygenated Compounds MtBE (Methyl-tert-butyl ether) Polycyclic VOCs Naphthalene Surrogates Dibromofluoromethane (Surrogate)	ру/L µу/L µу/L µу/L µу/L	0.5 0.5 1 0.5 0.5 0.5 0.5	- - - -	- - - - - -	<0.5 <0.5 <1 <0.5 <0.5 <0.5

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Acidity and Free CO2 Method: ME-(AU)-[ENV]AN140

Parameter	QC Reference	Units	LOR	MB	DUP %RPD
Acidity to pH 8.3	LB060108	mg CaCO3/L	5	<5	0 - 6%

Alkalinity Method: ME-(AU)-[ENV]AN135

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Alkalinity as CaCO3	LB060106	mg/L	5	<5	0%	101%
	LB060191	mg/L	5	<5	0 - 8%	98%
Carbonate Alkalinity as CO3	LB060106	mg/L	1	<1		
	LB060191	mg/L	1	<1		
Bicarbonate Alkalinity as HCO3	LB060106	mg/L	5	<5		
	LB060191	mg/L	5	<5		

Chloride by Discrete Analyser in Water Method: ME-(AU)-[ENV]AN274

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Chloride	LB060097	mg/L	1	<1	0 - 1%	102%	100 - 106%

Colour by Discrete Analyser Method: ME-(AU)-[ENV]AN285

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Colour (True)	LB060138	Hazen	1	<1	0%	96 - 97%

Filterable Reactive Phosphorus (FRP) Method: ME-(AU)-[ENV]AN278

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Filterable Reactive Phosphorus	LB060032	mg/L	0.002	<0.002	0 - 1%	99 - 103%	106 - 119%

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Fluoride by Ion Selective Electrode in Water Method: ME-(AU)-[ENV]AN141

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Fluoride by ISE	LB060212	mg/L	0.1	<0.1	0%	104%	78 - 102%

Low Level Ammonia Nitrogen by FIA Method: ME-(AU)-[ENV]AN261

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Ammonia Nitrogen, NH₃ as N	LB060285	mg/L	0.005	<0.005	0 - 9%	100 - 109%
Ammonia, NH ₃	LB060285	mg/L	0.005	<0.005	0 - 1%	100 - 109%

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311/AN312

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Mercury	LB060277	mg/L	0.00005	<0.00005	0%	98%	120%

Metals in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN320/AN321

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Calcium, Ca	LB060176	mg/L	0.2	<0.2	0 - 1%	96%	77%
Magnesium, Mg	LB060176	mg/L	0.1	<0.1	0 - 1%	99%	90%
Potassium, K	LB060176	mg/L	0.1	<0.1	1 - 7%	109%	96%
Silica, Soluble	LB060176	mg/L	0.05	<0.05			
Silicon, Si	LB060176	mg/L	0.02	<0.02		104%	87%
Sodium, Na	LB060176	mg/L	0.5	<0.5	1 - 2%	108%	71%

Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA Method: ME-(AU)-[ENV]AN258

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Nitrate, NO ₃ as NO ₃	LB060285	mg/L	0.05	<0.05		
Nitrate/Nitrite Nitrogen, NOx as N	LB060285	mg/L	0.005	<0.005	0 - 14%	102 - 107%
Nitrite Nitrogen, NO₂ as N	LB060285	mg/L	0.005	<0.005	0%	103 - 105%
Nitrate Nitrogen, NO₃ as N	LB060285	mg/L	0.005	<0.005		
Nitrite, NO ₂ as NO ₂	LB060285	mg/L	0.05	<0.05		

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Sulphate in water Method: ME-(AU)-[ENV]AN275

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Sulphate	LB060097	mg/L	1	<1	0 - 3%	102 - 103%	94 - 97%

Sulphide by Titration in Water Method: ME-(AU)-[ENV]AN149

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Sulphide	LB060025	mg/L	0.5	<0.5	96 - 103%

TKN Kjeldahl Digestion by Discrete Analyser Method: ME-(AU)-[ENV]AN281

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Kjeldahl Nitrogen	LB060220	mg/L	0.05	<0.05	1 - 12%	105%

Total and Volatile Suspended Solids (TSS / VSS) Method: ME-(AU)-[ENV]AN114

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Suspended Solids Dried at 105°C	LB060142	mg/L	5	<5	6 - 19%	95%

Total Phosphorus by Kjeldahl Digestion DA in Water Method: ME-(AU)-[ENV]AN279/AN293

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Phosphorus (Kjeldahl Digestion)	LB060220	mg/L	0.01	<0.01	0 - 4%	101%

Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Aluminium, Al	LB060179	µg/L	5	<5		108%	
Arsenic, As	LB060179	µg/L	1	<1	0%	94%	94%
Cadmium, Cd	LB060179	µg/L	0.1	<0.1	0%	100%	92%
Chromium, Cr	LB060179	µg/L	1	<1	0%	98%	101%
Copper, Cu	LB060179	µg/L	1	<1	0 - 1%	101%	75%
Iron, Fe	LB060179	µg/L	5	<5	9%	94%	90%
Lead, Pb	LB060179	µg/L	1	<1	0 - 1%	108%	101%
Manganese, Mn	LB060179	µg/L	1	<1	11%	97%	99%
Nickel, Ni	LB060179	µg/L	1	<1	0%	103%	99%
Selenium, Se	LB060179	µg/L	2	<2		83%	
Zinc, Zn	LB060179	µg/L	5	<5	4 - 13%	113%	101%

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Trace Metals (Total) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

Parameter	QC	Units	LOR	MB	LCS	MS
	Reference				%Recovery	%Recovery
Total Aluminium	LB060182	µg/L	5	<5	103%	NA
Total Iron	LB060182	µg/L	5	<5	95%	NA

VOCs in Water Method: ME-(AU)-[ENV]AN433/AN434

Monocyclic Aromatic Hydrocarbons

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Benzene	LB060117	µg/L	0.5	<0.5	95%
Toluene	LB060117	µg/L	0.5	<0.5	95%
Ethylbenzene	LB060117	µg/L	0.5	<0.5	94%
m/p-xylene	LB060117	µg/L	1	<1	
o-xylene	LB060117	µg/L	0.5	<0.5	

Oxygenated Compounds

Parameter	QC		LOR	MB
	Reference			
MtBE (Methyl-tert-butyl ether)	LB060117	µg/L	0.5	<0.5

Polycyclic VOCs

Parameter	QC	Units	LOR	MB
	Reference			
Naphthalene	LB060117	µg/L	0.5	<0.5

Surrogates

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Dibromofluoromethane (Surrogate)	LB060117	%	-	100%	105%
d4-1,2-dichloroethane (Surrogate)	LB060117	%	-	97%	105%
d8-toluene (Surrogate)	LB060117	%	-	96%	102%
Bromofluorobenzene (Surrogate)	LB060117	%	-	93%	96%

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433/AN434/AN410

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
TRH C6-C9	LB060117	µg/L	40	<40	90%

Surrogates					
Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Dibromofluoromethane (Surrogate)	LB060117	%	-	100%	105%
d4-1,2-dichloroethane (Surrogate)	LB060117	%	-	97%	105%
d8-toluene (Surrogate)	LB060117	%	-	96%	102%
Bromofluorobenzene (Surrogate)	LB060117	%	-	93%	96%

METHOD SUMMARY

METHOD	
METTOD	METHODOLOGY SUMMARY
AN114	Total Suspended and Volatile Suspended Solids: The sample is homogenised by shaking and a known volume is filtered through a pre-weighed GF/C filter paper and washed well with deionised water. The filter paper is dried and reweighed. The TSS is the residue retained by the filter per unit volume of sample. Reference APHA 2540 D. Internal Reference AN114
AN135	Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre) and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135
AN135	Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L. If TDS is >500mg/L free or total carbon dioxide cannot be reported. APHA4500CO2 D.
AN140	Acidity by Tritration: The water sample is titrated with sodium hydroxide to designated pH end point. In a sample containing only carbon dioxide, bicarbonates and carbonates, titration to pH 8.3 at 25°C corresponds to stoichiometric neutralisation of carbonic acid to bicarbonate. Method reference APHA 2310 B.
AN141	Determination of Fluoride by ISE: A fluoride ion selective electrode and reference electrode combination, in the presence of a pH/complexation buffer, is used to determine the fluoride concentration. The electrode millivolt response is measured logarithmically against fluoride concentration. Reference APHA F- C.
AN149	Sulphide by lodometric Titration: Sulphide is precipitated as zinc sulphide to overcome interferences with sulphite and thiosulphate. After filtration, sulphide is determined titrimetrically. Reference APHA 4500-S2-
AN258	Nitrate and Nitrite by FIA: In an acidic medium, nitrate is reduced quantitatively to nitrite by cadmium metal. This nitrite plus any original nitrite is determined as an intense red-pink azo dye at 540 nm following diazotisation with sulphanilamide and subsequent coupling with N-(1-naphthyl) ethylenediamine dihydrochloride. Without the cadmium reduction only the original nitrite is determined. Reference APHA 4500-NO3- F.
AN261	Ammonia by Continuous Flow Analyser: Ammonium in a basic medium forms ammonia gas, which is separated from the sample matrix by diffusion through a polypropylene membrane. The ammonia is reacted with phenol and hypochlorite to form indophenol blue at an intensity proportional to the ammonia concentration. The blue colour is intensified with sodium nitroprusside and the absorbance measured at 630 nm. The sensitivity of the automated method is 10-20 times that of the macro method. Reference APHA 4500-NH3 H.
AN274	Chloride by Aquakem DA: Chloride reacts with mercuric thiocyanate forming a mercuric chloride complex. In the presence of ferric iron, highly coloured ferric thiocyanate is formed which is proportional to the chloride concentration. Reference APHA 4500CI-
AN275	Sulphate by Aquakem DA: Sulphate is precipitated in an acidic medium with barium chloride. The resulting turbidity is measured photometrically at 405nm and compared with standard calibration solutions to determine the sulphate concentration in the sample. Reference APHA 4500-SO42 Internal reference AN275.
AN278	Reactive Phosphorus by DA: Orthophosphate reacts with ammonium molybdate (Mo VI) and potassium antimonyl tartrate (Sb III) in acid medium to form an antimony-phosphomolybdate complex. This complex is subsequently reduced with ascorbic acid to form a blue colour and the absorbance is read at 880 nm. The sensitivity of the automated method is 10-20 times that of the macro method. Reference APHA 4500-P F
AN279/AN293	The sample is digested with Sulphuric acid, K2SO4 and CuSO4. All forms of phosphorus are converted into orthophosphate. The digest is cooled and placed on the discrete analyser for colorimetric analysis.

METHOD SUMMARY

METHOD	
- METHOD	METHODOLOGY SUMMARY
AN281	An unfiltered water or soil sample is first digested in a block digestor with sulphuric acid, K2SO4 and CuSO4. The ammonia produced following digestion is then measured colourimetrically using the Aquakem 250 Discrete Analyser. A portion of the digested sample is buffered to an alkaline pH, and interfering cations are complexed. The ammonia then reacts with salicylate and hypochlorite to give a blue colour whose absorbance is measured at 660nm and compared with calibration standards. This is proportional to the concentration of Total Kjeldahl Nitrogen in the original sample.
AN285	The term 'colour' is used here to mean true colour, that is, the colour of water from which turbidity has been removed. The term 'apparent colour' includes not only colour due to substances in solution, but also that due to suspended matter. Apparent colour is determined on the original sample without filtration.
AN311/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN320/AN321	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320/AN321	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
AN433/AN434	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN433/AN434/AN410	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

PE075425 R0

FOOTNOTES

- IS Insufficient sample for analysis. LNR Sample listed, but not received.
- * This analysis is not covered by the scope of
- accreditation.
- ** Indicative data, theoretical holding time exceeded.^ Performed by outside laboratory.
- LOR Limit of Reporting
- ↑↓ Raised or Lowered Limit of Reporting
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance - The sample was not analysed for this analyte
- NVL Not Validated
- Samples analysed as received. Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au.pv.sgsv3/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.au.sgs.com/terms_and_conditions_au. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS	3	LABORATORY DETAI	ILS
Contact	Joe Edgell	Manager	Ros Ma
Client	ERM Australia Pty Ltd	Laboratory	SGS Newburn Environmental
Address	PO Box 7338 Cloisters Square Level 6, Grain Pool Bld, 172 St Georges Tce PERTH WA 6850	Address	10 Reid Rd Newburn WA 6105
Telephone	08 9321 5200	Telephone	(08) 9373 3500
Facsimile	08 9321 5262	Facsimile	(08) 9373 3556
Email	(Not specified)	Email	au.environmental.perth@sgs.com
Project	0086269 Burrup Nitrates	SGS Reference	PE075425 R0
Order Number	A07500	Report Number	0000057056
Samples	7	Date Reported	15 Mar 2013

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS Environmental Services' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction DateColour by Discrete Analyser5 itemsAnalysis DateColour by Discrete Analyser5 items

Sample counts by matrix	7 Water	Type of documentation received	COC	
Date documentation received	7/3/2013	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	15°C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes	Number of eskies/boxes received	1	

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services 10 Reid Rd PO Box 32 Newburn WA 6105 Welshpool WA 6983

Australia 3 Australia

t +61 8 9373 3500 f +61 8 9373 3556

556 www.au.sgs.com

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or **Red** with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

idity and Free CO2							Method:	ME-(AU)-[ENV]AN1
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
W1	PE075425.001	LB060108	06 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013
W2	PE075425.002	LB060108	06 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013
W3	PE075425.003	LB060108	06 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013
W5	PE075425.004	LB060108	06 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013
JP01	PE075425.005	LB060108	06 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013
alinity							Method:	ME-(AU)-[ENV]AN1
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
W1	PE075425.001	LB060106	06 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013
W2	PE075425.002	LB060106	06 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013
W3	PE075425.003	LB060106	06 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013
W5	PE075425.004	LB060106	06 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013
UP01	PE075425.005	LB060106	06 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013
N01	PE075425.006	LB060191	06 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013	07 Mar 2013
loride by Discrete Analyse								ME-(AU)-[ENV]AN2
<u> </u>		OC Bof	Somplad	Pagaivad	Extraction Due	Extracted		
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
W1	PE075425.001 PE075425.002	LB060097	06 Mar 2013	07 Mar 2013	03 Apr 2013	08 Mar 2013	03 Apr 2013	11 Mar 2013
W2		LB060097	06 Mar 2013	07 Mar 2013	03 Apr 2013	08 Mar 2013	03 Apr 2013	11 Mar 2013
W3	PE075425.003	LB060097	06 Mar 2013	07 Mar 2013	03 Apr 2013	08 Mar 2013	03 Apr 2013	11 Mar 2013
W5	PE075425.004	LB060097	06 Mar 2013	07 Mar 2013	03 Apr 2013	08 Mar 2013	03 Apr 2013	11 Mar 2013
UP01	PE075425.005	LB060097	06 Mar 2013	07 Mar 2013	03 Apr 2013	08 Mar 2013	03 Apr 2013	11 Mar 2013
N01	PE075425.006	LB060097	06 Mar 2013	07 Mar 2013	03 Apr 2013	08 Mar 2013	03 Apr 2013	11 Mar 2013
lour by Discrete Analyser	Comple No.		Compled	Dessived	Extraction Due	Evérencia d		ME-(AU)-[ENV]AN2
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
W1	PE075425.001	LB060138	06 Mar 2013	07 Mar 2013	08 Mar 2013	11 Mar 2013†	08 Mar 2013	11 Mar 2013†
W2	PE075425.002	LB060138	06 Mar 2013	07 Mar 2013	08 Mar 2013	11 Mar 2013†	08 Mar 2013	11 Mar 2013†
W3	PE075425.003	LB060138	06 Mar 2013	07 Mar 2013	08 Mar 2013	11 Mar 2013†	08 Mar 2013	11 Mar 2013†
W5	PE075425.004	LB060138	06 Mar 2013	07 Mar 2013	08 Mar 2013	11 Mar 2013†	08 Mar 2013	11 Mar 2013†
UP01	PE075425.005	LB060138	06 Mar 2013	07 Mar 2013	08 Mar 2013	11 Mar 2013†	08 Mar 2013	11 Mar 2013†
erable Reactive Phospho								ME-(AU)-[ENV]AN2
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
W1	PE075425.001	LB060032	06 Mar 2013	07 Mar 2013	03 Apr 2013	08 Mar 2013	03 Apr 2013	08 Mar 2013
W2	PE075425.002	LB060032	06 Mar 2013	07 Mar 2013	03 Apr 2013	08 Mar 2013	03 Apr 2013	08 Mar 2013
W3	PE075425.003	LB060032	06 Mar 2013	07 Mar 2013	03 Apr 2013	08 Mar 2013	03 Apr 2013	08 Mar 2013
W5	PE075425.004	LB060032	06 Mar 2013	07 Mar 2013	03 Apr 2013	08 Mar 2013	03 Apr 2013	08 Mar 2013
UP01	PE075425.005	LB060032	06 Mar 2013	07 Mar 2013	03 Apr 2013	08 Mar 2013	03 Apr 2013	08 Mar 2013
oride by Ion Selective Ele								ME-(AU)-[ENV]AN1
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
W1	PE075425.001	LB060212	06 Mar 2013	07 Mar 2013	03 Apr 2013	12 Mar 2013	03 Apr 2013	13 Mar 2013
W2	PE075425.002	LB060212	06 Mar 2013	07 Mar 2013	03 Apr 2013	12 Mar 2013	03 Apr 2013	13 Mar 2013
W3	PE075425.003	LB060212	06 Mar 2013	07 Mar 2013	03 Apr 2013	12 Mar 2013	03 Apr 2013	13 Mar 2013
W5	PE075425.004	LB060212	06 Mar 2013	07 Mar 2013	03 Apr 2013	12 Mar 2013	03 Apr 2013	13 Mar 2013
UP01	PE075425.005	LB060212	06 Mar 2013	07 Mar 2013	03 Apr 2013	12 Mar 2013	03 Apr 2013	13 Mar 2013
w Level Ammonia Nitroge	n by FIA							ME-(AU)-[ENV]AN2
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
W1	PE075425.001	LB060285	06 Mar 2013	07 Mar 2013	03 Apr 2013	13 Mar 2013	03 Apr 2013	14 Mar 2013
W2	PE075425.002	LB060285	06 Mar 2013	07 Mar 2013	03 Apr 2013	13 Mar 2013	03 Apr 2013	14 Mar 2013
W3	PE075425.003	LB060285	06 Mar 2013	07 Mar 2013	03 Apr 2013	13 Mar 2013	03 Apr 2013	14 Mar 2013
W5	PE075425.004	LB060285	06 Mar 2013	07 Mar 2013	03 Apr 2013	13 Mar 2013	03 Apr 2013	14 Mar 2013
UP01	PE075425.005	LB060285	06 Mar 2013	07 Mar 2013	03 Apr 2013	13 Mar 2013	03 Apr 2013	14 Mar 2013
rcury (dissolved) in Water	r						Method: ME-(AL)-[ENV]AN311/AN3
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
N01	PE075425.006	LB060277	06 Mar 2013	07 Mar 2013	03 Apr 2013	13 Mar 2013	03 Apr 2013	14 Mar 2013

Metals in Water (Dissolved) by ICPOES

Sample Name	Sample No.	QC Ref

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1: 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Metals in Water (Dissolved) by ICPOES (continued) Method: ME-(AU)-[ENV]AN320/AN321 Analysed Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due MW1 PE075425 001 LB060176 06 Mar 2013 07 Mar 2013 02 Sep 2013 11 Mar 2013 02 Sep 2013 14 Mar 2013 MW2 PE075425.002 LB060176 06 Mar 2013 07 Mar 2013 02 Sep 2013 11 Mar 2013 02 Sep 2013 14 Mar 2013 MW3 PE075425.003 LB060176 06 Mar 2013 07 Mar 2013 02 Sep 2013 11 Mar 2013 02 Sep 2013 14 Mar 2013 MW5 PE075425.004 LB060176 06 Mar 2013 07 Mar 2013 02 Sep 2013 11 Mar 2013 02 Sep 2013 14 Mar 2013 DUP01 PE075425.005 LB060176 06 Mar 2013 07 Mar 2013 02 Sep 2013 11 Mar 2013 02 Sep 2013 14 Mar 2013 14 Mar 2013 RIN01 PE075425.006 LB060176 06 Mar 2013 07 Mar 2013 11 Mar 2013 02 Sep 2013 02 Sep 2013 Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA Method: ME-(AU)-[ENVIAN258 Extracted Sample Nan Sample No. QC Ref Sampled Received Extraction Due Analysis Due Analysed MW1 PE075425 001 I B060285 06 Mar 2013 07 Mar 2013 03 Apr 2013 13 Mar 2013 03 Apr 2013 14 Mar 2013 MW2 PE075425.002 LB060285 06 Mar 2013 07 Mar 2013 03 Apr 2013 13 Mar 2013 03 Apr 2013 14 Mar 2013 06 Mar 2013 07 Mar 2013 MW3 13 Mar 2013 PE075425.003 LB060285 03 Apr 2013 03 Apr 2013 14 Mar 2013 MW5 PE075425.004 I B060285 06 Mar 2013 07 Mar 2013 03 Apr 2013 13 Mar 2013 03 Apr 2013 14 Mar 2013 DUP01 PE075425.005 LB060285 06 Mar 2013 07 Mar 2013 03 Apr 2013 13 Mar 2013 03 Apr 2013 14 Mar 2013 Method: ME-(AU)-[ENVIAN275 Sulphate in wate Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed MW1 PE075425.001 LB060097 06 Mar 2013 07 Mar 2013 03 Apr 2013 08 Mar 2013 03 Apr 2013 11 Mar 2013 MW2 PE075425.002 LB060097 06 Mar 2013 07 Mar 2013 03 Apr 2013 08 Mar 2013 03 Apr 2013 11 Mar 2013 MW3 PE075425.003 I B060097 06 Mar 2013 07 Mar 2013 03 Apr 2013 08 Mar 2013 03 Apr 2013 11 Mar 2013 MW5 07 Mar 2013 PE075425.004 LB060097 06 Mar 2013 03 Apr 2013 08 Mar 2013 03 Apr 2013 11 Mar 2013 DUP01 PE075425.005 LB060097 06 Mar 2013 07 Mar 2013 03 Apr 2013 08 Mar 2013 03 Apr 2013 11 Mar 2013 PE075425.006 LB060097 06 Mar 2013 07 Mar 2013 03 Apr 2013 08 Mar 2013 11 Mar 2013 RIN01 03 Apr 2013 Sulphide by Titration in Water Method: ME-(AU)-/ENVIAN149 Sampled Received Sample Name QC Ref Extraction Due Analysis Due Analysed Sample No. Extracted MW1 PE075425.001 LB060025 06 Mar 2013 07 Mar 2013 13 Mar 2013 08 Mar 2013 13 Mar 2013 13 Mar 2013 MW2 PE075425.002 LB060025 06 Mar 2013 07 Mar 2013 13 Mar 2013 08 Mar 2013 13 Mar 2013 13 Mar 2013 MW3 PE075425.003 LB060025 06 Mar 2013 07 Mar 2013 13 Mar 2013 08 Mar 2013 13 Mar 2013 13 Mar 2013 PE075425.004 06 Mar 2013 07 Mar 2013 13 Mar 2013 08 Mar 2013 13 Mar 2013 MW5 LB060025 13 Mar 2013 DUP01 PE075425.005 LB060025 06 Mar 2013 07 Mar 2013 13 Mar 2013 08 Mar 2013 13 Mar 2013 13 Mar 2013 TKN Kjeldahl Digestion by Discrete Analyse Method: ME-(AU)-[ENV]AN281 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed MW1 PE075425.001 LB060220 06 Mar 2013 07 Mar 2013 03 Apr 2013 12 Mar 2013 03 Apr 2013 13 Mar 2013 MW2 PE075425.002 LB060220 06 Mar 2013 07 Mar 2013 03 Apr 2013 12 Mar 2013 03 Apr 2013 13 Mar 2013 07 Mar 2013 MW3 PE075425.003 LB060220 06 Mar 2013 03 Apr 2013 12 Mar 2013 03 Apr 2013 13 Mar 2013 MW5 PE075425.004 LB060220 06 Mar 2013 07 Mar 2013 03 Apr 2013 12 Mar 2013 03 Apr 2013 13 Mar 2013 DUP01 PE075425.005 LB060220 06 Mar 2013 07 Mar 2013 03 Apr 2013 12 Mar 2013 03 Apr 2013 13 Mar 2013 Total and Volatile Suspended Solids (TSS / VSS) Method: ME-(AU)-[ENV]AN114 Sample Name QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed Sample No. MW1 PE075425.001 LB060142 06 Mar 2013 07 Mar 2013 13 Mar 2013 11 Mar 2013 18 Mar 2013 11 Mar 2013 LB060142 18 Mar 2013 11 Mar 2013 MW2 PE075425.002 06 Mar 2013 07 Mar 2013 13 Mar 2013 11 Mar 2013 MW3 PE075425.003 LB060142 06 Mar 2013 07 Mar 2013 13 Mar 2013 11 Mar 2013 18 Mar 2013 11 Mar 2013 MW5 PE075425.004 LB060142 06 Mar 2013 07 Mar 2013 13 Mar 2013 11 Mar 2013 18 Mar 2013 11 Mar 2013 DUP01 PE075425.005 LB060142 06 Mar 2013 07 Mar 2013 13 Mar 2013 11 Mar 2013 18 Mar 2013 11 Mar 2013 Method: ME-(AU)-[ENV]AN279/AN293 Total Phosphorus by Kieldahl Digestion DA in Water Sample Name Sample No. Sampled Received Extraction Due Extracted Analysis Due Analysed QC Ref MW1 PE075425.001 LB060220 06 Mar 2013 07 Mar 2013 03 Apr 2013 12 Mar 2013 03 Apr 2013 13 Mar 2013 MW2 PE075425.002 LB060220 07 Mar 2013 06 Mar 2013 03 Apr 2013 12 Mar 2013 03 Apr 2013 13 Mar 2013 MW3 PE075425.003 LB060220 06 Mar 2013 07 Mar 2013 03 Apr 2013 12 Mar 2013 03 Apr 2013 13 Mar 2013 MW5 PE075425.004 LB060220 06 Mar 2013 07 Mar 2013 03 Apr 2013 12 Mar 2013 03 Apr 2013 13 Mar 2013 DUP01 PE075425.005 LB060220 06 Mar 2013 07 Mar 2013 03 Apr 2013 12 Mar 2013 03 Apr 2013 13 Mar 2013 Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed MW1 PE075425.001 LB060179 06 Mar 2013 07 Mar 2013 02 Sep 2013 02 Sep 2013 13 Mar 2013 11 Mar 2013 MW2 PE075425.002 LB060179 06 Mar 2013 07 Mar 2013 02 Sep 2013 11 Mar 2013 02 Sep 2013 13 Mar 2013 MW3 PE075425.003 LB060179 06 Mar 2013 07 Mar 2013 02 Sep 2013 11 Mar 2013 02 Sep 2013 13 Mar 2013 MW5 PE075425.004 LB060179 06 Mar 2013 07 Mar 2013 11 Mar 2013 02 Sep 2013 02 Sep 2013 13 Mar 2013 DUP01 PE075425.005 LB060179 06 Mar 2013 07 Mar 2013 02 Sep 2013 11 Mar 2013 02 Sep 2013 13 Mar 2013

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Trace Metals (Dissolved) in Water by ICPMS (continued) Method: ME-(AU)-[ENV]AN318 Analysis Due Analysed Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted RIN01 PE075425.006 LB060179 06 Mar 2013 07 Mar 2013 02 Sep 2013 11 Mar 2013 02 Sep 2013 13 Mar 2013 Trace Metals (Total) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Sample Name Sample No. QC Ref Received Extraction Due Extracted Analysis Due Analysed Sampled MW1 PE075425.001 LB060182 06 Mar 2013 07 Mar 2013 02 Sep 2013 11 Mar 2013 02 Sep 2013 14 Mar 2013 06 Mar 2013 07 Mar 2013 11 Mar 2013 14 Mar 2013 MW2 PE075425.002 LB060182 02 Sep 2013 02 Sep 2013 MW3 PE075425.003 LB060182 06 Mar 2013 07 Mar 2013 02 Sep 2013 11 Mar 2013 02 Sep 2013 14 Mar 2013 MW5 PE075425.004 LB060182 06 Mar 2013 07 Mar 2013 02 Sep 2013 11 Mar 2013 02 Sep 2013 14 Mar 2013 DUP01 PE075425.005 LB060182 06 Mar 2013 07 Mar 2013 02 Sep 2013 11 Mar 2013 02 Sep 2013 14 Mar 2013 VOCs in Water Method: ME-(AU)-[ENVIAN433/AN434 Sample Name Sample No. Sampled Analysis Due Analysed QC Ref Received Extraction Due Extracted Trip Blank PE075425.007 LB060117 06 Mar 2013 07 Mar 2013 13 Mar 2013 10 Mar 2013 19 Apr 2013 14 Mar 2013

Volatile Petroleum Hydrocarbons in Water						Method: ME-(AU)-[ENV]	AN433/AN434/AN410	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Trip Blank	PE075425.007	LB060117	06 Mar 2013	07 Mar 2013	13 Mar 2013	10 Mar 2013	19 Apr 2013	14 Mar 2013

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOCs in Water				Method: ME-(AU)-	[ENV]AN433/AN434
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	Trip Blank	PE075425.007	%	60 - 130%	97
d4-1,2-dichloroethane (Surrogate)	Trip Blank	PE075425.007	%	40 - 130%	102
d8-toluene (Surrogate)	Trip Blank	PE075425.007	%	60 - 130%	100
Dibromofluoromethane (Surrogate)	Trip Blank	PE075425.007	%	60 - 130%	102
Volatile Petroleum Hydrocarbons in Water			Metho	d: ME-(AU)-[ENV]A	N433/AN434/AN410
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	Trip Blank	PE075425.007	%	60 - 130%	97
d4-1,2-dichloroethane (Surrogate)	Trip Blank	PE075425.007	%	60 - 130%	102
d8-toluene (Surrogate)	Trip Blank	PE075425.007	%	60 - 130%	100
Dibromofluoromethane (Surrogate)	Trip Blank	PE075425.007	%	60 - 130%	102

METHOD BLANKS

PE075425 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Acidity and Free CO2 Method: ME-(AU)-[ENV]AN140 Sample Number LOR Result Parameter Units LB060108.001 mg CaCO3/L Acidity to pH 8.3 5 <5

Alkalinity

Alkalinity			Me	thod: ME-(AU)-[ENV]AN135
Sample Number	Parameter	Units	LOR	Result
LB060106.001	Total Alkalinity as CaCO3	mg/L	5	<5
LB060191.001	Total Alkalinity as CaCO3	mg/L	5	<5
			5 5	<

Chloride by Discrete Analyser in Water

Chloride by Discrete Analyser in Water		Metho	od: ME-(AU)-[ENV]AN274	
Sample Number	Parameter	Units	LOR	Result
LB060097.001	Chloride	mg/L	1	<1
LB060097.026	Chloride	mg/L	1	<1

Colour by Discrete Analyser

Colour by Discrete Analyser			N	Method: ME-(AU)-[ENV]AN285
Sample Number	Parameter	Units	LOR	Result
LB060138.001	Colour (True)	Hazen	1	<1
LB060138.025	Colour (True)	Hazen	1	<1

Filterable Reactive Phosphorus (FRP)

Filterable Reactive Phosphorus (FRP)		Metho	od: ME-(AU)-[ENV]AN278	
Sample Number	Parameter	Units	LOR	Result
LB060032.001	Filterable Reactive Phosphorus	mg/L	0.002	<0.002
LB060032.025	Filterable Reactive Phosphorus	mg/L	0.002	<0.002

Fluoride by Ion Selective Electrode in Water

Fluoride by Ion Selective Elective	ctrode in Water		Me	thod: ME-(AU)-[ENV]AN141
Sample Number	Parameter	Units	LOR	Result
LB060212.001	Fluoride by ISE	mg/L	0.1	<0.1
LB060212.026	Fluoride by ISE	mg/L	0.1	<0.1

Low Level Ammonia Nitrogen by FIA

			· · · ·
Parameter	Units	LOR	Result
Ammonia Nitrogen, NH₃ as N	mg/L	0.005	<0.005
Ammonia, NH ₃	mg/L	0.005	<0.005
Ammonia Nitrogen, NH₃ as N	mg/L	0.005	<0.005
Ammonia, NH ₃	mg/L	0.005	<0.005
Ammonia Nitrogen, NH₃ as N	mg/L	0.005	<0.005
Ammonia, NH₃	mg/L	0.005	<0.005
		Method: ME-((AU)-[ENV]AN311/AN312
Parameter	Units	LOR	Result
Mercury	mg/L	0.00005	<0.00005
	Ammonia Nitrogen, NHs as N Ammonia, NHs Ammonia Nitrogen, NHs as N Ammonia, NHs Ammonia Nitrogen, NHs as N Ammonia, NHs Ammonia, NHs Ammonia, NHs Parameter	Ammonia Nitrogen, NH ₃ as N mg/L Ammonia, NH ₃ mg/L Ammonia Nitrogen, NH ₃ as N mg/L Ammonia, NH ₃ mg/L Ammonia Nitrogen, NH ₃ as N mg/L Vinits Mg/L	Ammonia Nitrogen, NHs as N mg/L 0.005 Ammonia, NHs mg/L 0.005 Ammonia, NHs mg/L 0.005 Ammonia Nitrogen, NHs as N mg/L 0.005 Ammonia, NHs mg/L 0.005 Ammonia, NHs mg/L 0.005 Ammonia, NHs Mg/L 0.005 Parameter Units LOR

Metals in Water (Dissolved) by ICPOES

Metals in Water (Dissolved) by ICPOES	etals in Water (Dissolved) by ICPOES		Method: ME-(AU)-[ENV]AN320/AN3	
Sample Number	Parameter	Units	LOR	Result
LB060176.001	Calcium, Ca	mg/L	0.2	<0.2
	Magnesium, Mg	mg/L	0.1	<0.1
	Potassium, K	mg/L	0.1	<0.1
	Silicon, Si	mg/L	0.02	<0.02
	Sodium, Na	mg/L	0.5	<0.5
Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA			Meth	od: ME-(AU)-[ENV]AN25
Sample Number	Parameter	Units	LOR	Result
LB060285.001	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.005	<0.005
	Nitrite Nitrogen, NO₂ as N	mg/L	0.005	<0.005
LB060285.024	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.005	<0.005
	Nitrite Nitrogen, NO₂ as N	mg/L	0.005	<0.005
LB060285.047	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.005	<0.005
	Nitrite Nitrogen, NO₂ as N	mg/L	0.005	<0.005

Method: ME-(AU)-[ENV]AN261

METHOD BLANKS

PE075425 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Method: ME-(AU)-[ENV]AN275

Sample Number	Parameter	Units	LOR	Result
LB060097.001	Sulphate	mg/L	1	<1
LB060097.026	Sulphate	mg/L	1	<1

Sulphide by Titration in Water

Sulphate in water

Sulphide by Titration in Water			Meth	od: ME-(AU)-[ENV]AN149
Sample Number	Parameter	Units	LOR	Result
LB060025.001	Sulphide	mg/L	0.5	<0.5
LB060025.025	Sulphide	mg/L	0.5	<0.5
E000023.023	Supride	nig/L	0.0	-0.5

TKN Kjeldahl Digestion by Discrete Analyser

TKN Kjeldahl Digestion by Discrete Analyser			Meth	od: ME-(AU)-[ENV]AN281
Sample Number	Parameter	Units	LOR	Result
LB060220.002	Total Kjeldahl Nitrogen	mg/L	0.05	<0.05

Total and Volatile Suspended Solids (TSS / VSS)

Total and Volatile Suspended Solids (TSS / VSS)			Me	ethod: ME-(AU)-[ENV]AN114
Sample Number	Parameter	Units	LOR	Result
LB060142.001	Total Suspended Solids Dried at 105°C	mg/L	5	<5

Total Phosphorus by Kjeldahl Digestic	on DA in Water		Method: ME-	(AU)-[ENV]AN279/AN293
Sample Number	Parameter	Units	LOR	Result
L B060220.001	Total Phosphorus (Kieldahl Digestion)	ma/L	0.01	<0.01

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Dissolved) in Water by ICPMS	ace Metals (Dissolved) in Water by ICPMS			Method: ME-(AU)-[ENV]AN31
Sample Number	Parameter	Units	LOR	Result
LB060179.001	Aluminium, Al	μg/L	5	<5
	Arsenic, As	μg/L	1	<1
	Cadmium, Cd	μg/L	0.1	<0.1
	Chromium, Cr	μg/L	1	<1
	Copper, Cu	μg/L	1	<1
	Iron, Fe	μg/L	5	<5
	Lead, Pb	μg/L	1	<1
	Manganese, Mn	μg/L	1	<1
	Nickel, Ni	μg/L	1	<1
	Selenium, Se	μg/L	2	<2
	Zinc, Zn	μg/L	5	<5
Trace Metals (Total) in Water by ICPMS				Method: ME-(AU)-[ENV]AN31
Sample Number	Parameter	Units	LOR	Result
LB060182.001	Total Aluminium	μg/L	5	<5

VOCs in Water

VOCs in Water				Method: ME-(AU)-[ENV]AN433/AN4	
Sample Number		Parameter	Units	LOR	Result
LB060117.001	Monocyclic Aromatic	Benzene	µg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	µg/L	1	<1
		o-xylene	µg/L	0.5	<0.5
	Oxygenated Compounds	MtBE (Methyl-tert-butyl ether)	μg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	100
		d4-1,2-dichloroethane (Surrogate)	%	-	97
		d8-toluene (Surrogate)	%	-	96
		Bromofluorobenzene (Surrogate)	%	-	93
Volatile Petroleum Hyd	rocarbons in Water			Method: ME-(AU)-[E	NVJAN433/AN434/AN410
Sample Number		Parameter	Units	LOR	

METHOD BLANKS

PE075425 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Water (continued)

Method:	ME-(AU)-[ENV]AN433/AN434/AN410

Sample Number		Parameter	Units	LOR	Result
LB060117.001		TRH C6-C9	μg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	100
		d4-1,2-dichloroethane (Surrogate)	%	-	97
		d8-toluene (Surrogate)	%	-	96
		Bromofluorobenzene (Surrogate)	%	-	93

Method: ME-(AU)-[ENV]AN274

Method: ME-(AU)-[ENV]AN285

Method: ME-(AU)-[ENV]AN278

Method: ME-(AU)-[ENV]AN141

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Acidity and Free C	002					Meth	od: ME-(AU)-	ENVJAN14
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE075381.010	LB060108.012	Acidity to pH 8.3	mg CaCO3/L	5	50	54	25	6
PE075381.013	LB060108.016	Acidity to pH 8.3	mg CaCO3/L	5	19	19	41	0
PE075425.005	LB060108.023	Acidity to pH 8.3	mg CaCO3/L	5	45	46	26	2
Alkalinity						Meth	od: ME-(AU)-	ENVJAN135

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE075398.002	LB060191.007	Total Alkalinity as CaCO3	mg/L	5	16	14	48	8
PE075425.001	LB060106.012	Total Alkalinity as CaCO3	mg/L	5	300	300	17	0
PE075447A.009	LB060191.017	Total Alkalinity as CaCO3	mg/L	5	379.78	380.54	16	0

Chloride by Discrete Analyser in Water

	· · · · · · · · · · · · · · · · · · ·							
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE075373.003	LB060097.015	Chloride	mg/L	1	61	61	17	1
PE075381.009	LB060097.029	Chloride	mg/L	1	<1	<1	125	0
PE075425.006	LB060097.040	Chloride	mg/L	1	<1	<1	200	0

Colour by Discrete Analyser

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE075398.001	LB060138.013	Colour (True)	Hazen	1	<1	<1	200	0
PE075425.002	LB060138.024	Colour (True)	Hazen	1	<1	<1	200	0
PE075447A.009	LB060138.035	Colour (True)	Hazen	1	0	0	200	0

Filterable Reactive Phosphorus (FRP)

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE075425.002	LB060032.014	Filterable Reactive Phosphorus	mg/L	0.002	<0.002	<0.002	200	0
PE075429.010	LB060032.028	Filterable Reactive Phosphorus	mg/L	0.002	0.017	0.017	45	1
PE075429.012	LB060032.031	Filterable Reactive Phosphorus	mg/L	0.002	0.039	0.039	28	1

Fluoride by Ion Selective Electrode in Water

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE075327.004	LB060212.014	Fluoride by ISE	mg/L	0.1	<0.1	<0.1	200	0
PE075399.004	LB060212.028	Fluoride by ISE	mg/L	0.1	<0.1	<0.1	200	0
PE075425.005	LB060212.045	Fluoride by ISE	mg/L	0.1	1.4	1.4	22	0
PE075450.001	LB060212.040	Fluoride by ISE	mg/L	0.1	0.65	0.65	30	0
Low Level Ammor	nia Nitrogen by FIA					Meth	od: ME-(AU)-[ENVJAN261
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %

Oliginai	Baphoato	1 didition	onito	LOIL	enginai	Baphoato	ontonia /o	1.1.2.70
PE075429.001	LB060285.037	Ammonia Nitrogen, NH ₃ as N	mg/L	0.005	1.1	1.1	15	4
PE075429.012	LB060285.049	Ammonia Nitrogen, NH ₃ as N	mg/L	0.005	0.13	0.12	19	9
PE075470.010	LB060285.013	Ammonia Nitrogen, NH₃ as N	mg/L	0.005	0	0	200	0
		Ammonia, NH₃	mg/L	0.005	0	0	200	0
PE075473.005	LB060285.026	Ammonia Nitrogen, NH ₃ as N	mg/L	0.005	0.39	0.39	16	1
		Ammonia, NH₃	mg/L	0.005	0.47	0.47	16	1
Mercury (dissolved	d) in Water					Method: ME-	-(AU)-[ENV]AI	N311/AN31;

Mercury (dissolved) in Water

(dissolved)	in water					Moulou. ML		1011//11012
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE075399.001	LB060277.014	Mercury	µg/L	0.00005	<0.00005	<0.00005	200	0
PE075472.001	LB060277.024	Mercury	μg/L	0.00005	0	0	200	0

Metals in Water (Dissolved) by ICPOES

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE075429.004	LB060176.014	Calcium, Ca	mg/L	0.2	4.9	5.0	19	0
		Magnesium, Mg	mg/L	0.1	3.6	3.5	18	0
		Potassium, K	mg/L	0.1	2.4	2.6	19	7
		Sodium, Na	mg/L	0.5	27	28	17	1
PE075429.012	LB060176.021	Calcium, Ca	mg/L	0.2	110	110	15	1
		Magnesium, Mg	mg/L	0.1	37	37	15	1
		Potassium, K	mg/L	0.1	3.0	3.1	18	1
		Sodium, Na	mg/L	0.5	170	170	15	2
Nitrate Nitrogen a	nd Nitrite Nitrogen (NOx) by FL	A				Meth	od: ME-(AU)-	ENVJAN25

Method: ME-(AU)-[ENV]AN320/AN321

Original	Duplicate	Parameter	Units	LOR

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

Total Kjeldahl Nitrogen

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Nitrate Nitrogen an	nd Nitrite Nitrogen (NOx) by FIA	A (continued)				Meth	nod: ME-(AU)-	[ENV]AN258
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE075429.001	LB060285.037	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.005	<0.005	<0.005	200	0
PE075429.012	LB060285.049	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.005	0.015	0.013	51	14
PE075470.010	LB060285.013	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.005	0	0	200	0
		Nitrite Nitrogen, NO₂ as N	mg/L	0.005	0	0	200	0
PE075473.005	LB060285.026	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.005	<0	0	200	0
		Nitrite Nitrogen, NO₂ as N	mg/L	0.005	<0	0	200	0
Sulphate in water						Meth	od: ME-(AU)-	[ENV]AN27
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE075373.003	LB060097.015	Sulphate	mg/L	1	73	71	16	3
PE075381.009	LB060097.030	Sulphate	mg/L	1	5	5	34	1
PE075425.006	LB060097.041	Sulphate	mg/L	1	<1	<1	200	0
TKN Kjeldahl Dige	stion by Discrete Analyser					Meth	od: ME-(AU)-	[ENV]AN28
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE075425.001	LB060220.011	Total Kjeldahl Nitrogen	mg/L	0.05	0.14	0.13	52	12

Total and Volatile	Sugnanded	Solide	(Tee	1/99/

LB060220.023

PE075474.004

	Cuspended Collas (10					Wour	ou. mic-(//o)-[(Constraint)
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE075391.001	LB060142.020	Total Suspended Solids Dried at 105°C	mg/L	5	70.918367346	58.4999999999	23	19
PE075450.001	LB060142.013	Total Suspended Solids Dried at 105°C	mg/L	5	7.1428571428	37.5757575757	83	6

mg/L

0.05

2.3675

2.3975

17

Method: ME-(ALI)-IENVIAN114

1

Total Phosphorus by Kjeldahl Digestion DA in Water

Total Phosphorus by	y Kjeldahl Digestion DA in Water					Method: ME-	-(AU)-[ENV]AI	1279/AN293
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE075425.001	LB060220.011	Total Phosphorus (Kjeldahl Digestion)	mg/L	0.01	<0.01	<0.01	200	0
PE075474.004	LB060220.022	Total Phosphorus (Kjeldahl Digestion)	mg/L	0.01	42.4375	40.6125	15	4

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Diss	olved) in Water by ICPMS					Meth	od: ME-(AU)-	ENVJAN318
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE075405.008	LB060179.014	Arsenic, As	µg/L	1	<1	<1	200	0
		Cadmium, Cd	µg/L	0.1	<0.1	<0.1	200	0
		Chromium, Cr	μg/L	1	<1	<1	200	0
		Copper, Cu	μg/L	1	1100	1100	15	1
		Iron, Fe	μg/L	5	11	10	63	9
		Lead, Pb	μg/L	1	<1	1	118	1
		Manganese, Mn	μg/L	1	1	1	101	11
		Nickel, Ni	μg/L	1	<1	<1	200	0
		Zinc, Zn	μg/L	5	93	89	20	4
PE075425.006	LB060179.023	Arsenic, As	μg/L	1	<1	<1	200	0
		Cadmium, Cd	μg/L	0.1	<0.1	<0.1	200	0
		Chromium, Cr	μg/L	1	<1	<1	200	0
		Copper, Cu	μg/L	1	<1	<1	200	0
		Lead, Pb	μg/L	1	<1	<1	200	0
		Nickel, Ni	μg/L	1	<1	<1	200	0
		Zinc, Zn	μg/L	5	13	12	56	13

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Method: ME-(AU)-[ENV]AN135

Method: ME-(AU)-[ENV]AN274

Method: ME-(AU)-[ENV]AN141

Method: ME-(AU)-[ENV]AN261

Alkalinity Method: ME-(AU)-[E						U)-[ENV]AN135	
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB060106.002	Total Alkalinity as CaCO3	mg/L	5	230	225	85 - 115	101
LB060191.002	Total Alkalinity as CaCO3	mg/L	5	220	225	85 - 115	98

Chloride by Discrete Analyser in Water

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB060097.002	Chloride	mg/L	1	20	20	85 - 115	102
LB060097.027	Chloride	mg/L	1	20	20	85 - 115	102

Colour by Discrete Analyser

Colour by Discrete Analyser							
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB060138.002	Colour (True)	Hazen	1	5	5	90 - 110	97
LB060138.026	Colour (True)	Hazen	1	5	5	90 - 110	96

Filterable Reactive Phosphorus (FRP)

Filterable Reactive Phosphorus (FRP)			Method: ME-(AU)-[ENV]AN2 Units LOR Result Expected Criteria % Recovery %				
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB060032.002	Filterable Reactive Phosphorus	mg/L	0.002	0.051	0.05	80 - 120	103
LB060032.026	Filterable Reactive Phosphorus	mg/L	0.002	0.049	0.05	80 - 120	99

Fluoride by Ion Selective Electrode in Water

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB060212.002	Fluoride by ISE	mg/L	0.1	2.1	2	80 - 120	104

Low Level Ammonia Nitrogen by FIA

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB060285.002	Ammonia Nitrogen, NH₃ as N	mg/L	0.005	0.87	0.8	85 - 115	109
	Ammonia, NH ₃	mg/L	0.005	1.1	0.971	85 - 115	109
LB060285.025	Ammonia Nitrogen, NH₃ as N	mg/L	0.005	0.80	0.8	85 - 115	100
	Ammonia, NH ₃	mg/L	0.005	0.97	0.971	85 - 115	100
LB060285.048	Ammonia Nitrogen, NH₃ as N	mg/L	0.005	0.80	0.8	85 - 115	100
	Ammonia, NH₃	mg/L	0.005	0.97	0.971	85 - 115	100
Mercury (dissolved) in Water					Method:	ME-(AU)-[EN\	/JAN311/AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB060277.002	Mercury	mg/L	0.00005	0.0025	2.5	80 - 120	98

Metals in Water (Dissolved) by ICPOES

Metals in Water (Dissolved)	by ICPOES				Method:	ME-(AU)-[EN	/JAN320/AN32
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB060176.002	Calcium, Ca	mg/L	0.2	190	200	80 - 120	96
	Magnesium, Mg	mg/L	0.1	200	200	80 - 120	99
	Potassium, K	mg/L	0.1	22	20	80 - 120	109
	Silicon, Si	mg/L	0.02	2.1	2	80 - 120	104
	Sodium, Na	mg/L	0.5	220	200	80 - 120	108
Nitrate Nitrogen and Nitrite N	trogen (NOx) by FIA				N	lethod: ME-(A	U)-[ENV]AN25
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB060285.002	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.005	0.82	0.8	85 - 115	102
	Nitrite Nitrogen, NO₂ as N	mg/L	0.005	0.83	0.8	85 - 115	103
LB060285.025	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.005	0.84	0.8	85 - 115	105
	Nitrite Nitrogen, NO₂ as N	mg/L	0.005	0.84	0.8	85 - 115	105
LB060285.048	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.005	0.85	0.8	85 - 115	107
	Nitrite Nitrogen, NO₂ as N	mg/L	0.005	0.83	0.8	85 - 115	104
Sulphate in water					N	lethod: ME-(A	U)-[ENV]AN27
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB060097.002	Sulphate	mg/L	1	10	10	80 - 120	103
LB060097.028	Sulphate	mg/L	1	10	10	80 - 120	102

Method: ME-(AU)-[ENV]AN318

Method: ME-(AU)-[ENV]AN433/AN434

60 - 130

5

4.8

µg/L

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sulphide by Titration in Water					1	Nethod: ME-(A	U)-[ENV]AN149
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB060025.002	Sulphide	mg/L	0.5	1.0	1	80 - 120	96
LB060025.026	Sulphide	mg/L	0.5	1.0	1	80 - 120	103

TKN Kjeldahl Digestion by Discrete Analyser

TKN Kjeldahl Digestion by Discrete A	nalyser				Method: ME-(AU)-[ENV]AN Expected Criteria % Recovery 1 80 - 120 105		
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB060220.001	Total Kjeldahl Nitrogen	mg/L	0.05	1.1	1	80 - 120	105

Total and Volatile Suspended Solids (TSS / VSS)

Total and Volatile Suspended Solid	s (TSS / VSS)				N	lethod: ME-(Al	J)-[ENV]AN114
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB060142.002	Total Suspended Solids Dried at 105°C	mg/L	5	470	500	85 - 115	95

Total Phosphorus by Kjeldahl Digestion DA in Water

Total Phosphorus by Kjeldahl Digesti	on DA in Water				Method:	ME-(AU)-[ENV	/JAN279/AN293
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB060220.001	Total Phosphorus (Kjeldahl Digestion)	mg/L	0.01	0.51	0.5	80 - 120	101

Trace Metals (Dissolved) in Water by ICPMS

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB060179.002	Aluminium, Al	µg/L	5	11	10	80 - 120	108
	Arsenic, As	µg/L	1	9	10	80 - 120	94
	Cadmium, Cd	µg/L	0.1	10	10	80 - 120	100
	Chromium, Cr	μg/L	1	10	10	80 - 120	98
	Copper, Cu	μg/L	1	10	10	80 - 120	101
	Iron, Fe	μg/L	5	9	10	80 - 120	94
	Lead, Pb	μg/L	1	11	10	80 - 120	108
	Manganese, Mn	μg/L	1	10	10	80 - 120	97
	Nickel, Ni	μg/L	1	10	10	80 - 120	103
	Selenium, Se	µg/L	2	8	10	80 - 120	83
	Zinc, Zn	µg/L	5	11	10	80 - 120	113

Trace Metals (Total) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Sample Number Parameter Units Expected Criteria % Recovery % LOR Result LB060182.002 Total Aluminium µg/L 5 80 - 120 103 5 5 Total Iron <5 80 - 120 µg/L 5 5 95

VOCs in Water

							· · · · · ·	-
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB060117.002	Monocyclic	Benzene	μg/L	0.5	4.8	5	50 - 150	95
	Aromatic	Toluene	μg/L	0.5	4.8	5	50 - 150	95
		Ethylbenzene	µg/L	0.5	4.7	5	50 - 150	94
	Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.2	5	60 - 130	105
		d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.2	5	60 - 130	105
		d8-toluene (Surrogate)	μg/L	-	5.1	5	60 - 130	102
		Bromofluorobenzene (Surrogate)	µg/L	-	4.8	5	60 - 130	96
Volatile Petroleum	Hydrocarbons in	Water			1	Method: ME-(Al	J)-[ENV]AN43	3/AN434/AN4 [,]
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB060117.002		TRH C6-C9	μg/L	40	<40	30	70 - 130	90
	Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.2	5	60 - 130	105
		d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.2	5	60 - 130	105
		d8-toluene (Surrogate)	μg/L	-	5.1	5	60 - 130	102

Bromofluorobenzene (Surrogate)

96

MATRIX SPIKES

PE075425 R0

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Chloride by Discrete Analyser in Water

Chloride by Discre	ete Analyser in Water					Meth	od: ME-(AU)-[ENV]AN274
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
PE075373.001	LB060097.012	Chloride	mg/L	1	160	61	100	100
PE075381.012	LB060097.032	Chloride	mg/L	1	110	<1	100	106

Filterable Reactive Phosphorus (FRP)

Filterable Reactive	e Phosphorus (FRP)					Meth	od: ME-(AU	J)-[ENV]AN278
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
PE071460H16.	LB060032.004	Filterable Reactive Phosphorus	mg/L	0.002	0.057	<0.005	0.05	106
PE075429.012	LB060032.030	Filterable Reactive Phosphorus	mg/L	0.002	0.099	0.039	0.05	119

Fluoride by Ion Selective Electrode in Water

Fluoride by Ion S	Selective Electrode in Water					Met	hod: ME-(Al	J)-[ENV]AN141
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
PE075301.001	LB060212.004	Fluoride by ISE	mg/L	0.1	1.2	0.8	0.5	78
PE075398.001	LB060212.029	Fluoride by ISE	mg/L	0.1	0.6	<0.1	0.5	102

Mercury (dissolved) in Water

Mercury (dissolve	d) in Water					Method: Mi	E-(AU)-[ENV]AN311/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
PE075344.003	LB060277.004	Mercury	mg/L	0.00005	0.0024	0	0.0025	120

Metals in Water (Dissolved) by ICPOES

QC Sample	Sample Number	Parameter	Ur	nits	LOR	Result	Original	Spike	Recovery%
PE075425.001	LB060176.004	Calcium, Ca	m	g/L	0.2	310	160	200	77
		Magnesium, Mg	m	g/L	0.1	230	49	200	90
		Potassium, K	m	g/L	0.1	27	8.2	20	96
		Silicon, Si	m	g/L	0.02	17	15	2	87
		Sodium, Na	mg	g/L	0.5	420	280	200	71
Sulphate in wate	r						Meth	od: ME-(AL)-[ENV]AN275
QC Sample	Sample Number	Parameter	Ur	nits	LOR	Result	Original	Spike	Recovery%
PE075373.001	LB060097.012	Sulphate	m	g/L	1	170	76	100	94

mg/L

97

1

<1

Trace Metals (Dissolved) in Water by ICPMS

LB060097.032

Sulphate

PE075381.012

Trace Metals (D	issolved) in Water by ICPMS					Meth	od: ME-(AU	J)-[ENV]AN318
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
PE075376.001	LB060179.004	Arsenic, As	 µg/L	1	10	0.407105	10	94
		Cadmium, Cd	 µg/L	0.1	9.2	0.015736	10	92
		Chromium, Cr	 µg/L	1	11	1.305448	10	101
		Copper, Cu	 µg/L	1	64	56.713463	10	75
		Iron, Fe	 µg/L	5	13	3.6	10	90
		Lead, Pb	 µg/L	1	10	0.2646	10	101
		Manganese, Mn	 µg/L	1	10	0.26393	10	99
		Nickel, Ni	 µg/L	1	10	0.204747	10	99
		Zinc, Zn	µg/L	5	74	64.243586	10	101
Trace Metals (To	otal) in Water by ICPMS					Meth	od: ME-(AU	J)-[ENV]AN318

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
PE075425.001	LB060182.004	Total Aluminium	µg/L	5	9600	10000	5	-
		Total Iron	µg/L	5	12000	14000	5	-

Method: ME-(AU)-[ENV]AN320/AN321

97

100

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-11.pdf

- * Non-accredited analysis.
- Sample not analysed for this analyte.
- ^ Analysis performed by external laboratory.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- I Low surrogate recovery due to the sample emulsifying during extraction.
- † Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

	Sydney	Lev	nd Floor, 33 vel 3, Yarra vel 1, 60 Lei	Tower, WTC	C, 18-3 eet, Sp	8 Sidde orina Hi	eley Stre	et, Dockla 4004. (ph)	nds, VIC 07 3839	, 3005. (p	oh) 03 ax) 07	9696 8	8381	(fax) 03	3 9696	8022	Pro	oject	Nam	e:	VA	62. 192	Y	ARA	T	AN	PF	COC Number	95
	Hunter Valley	y 53	vel 6, Grain Bonville Ave	enue, Thorn	nton, NS	SW. 23	22. (ph)	02 4964 2	150 (fa	() 02 496	4 215	2							Loca		Б,	urri	ip e	-	-			Laboratory	
ERN	I □ North Coast □ Other	Sui	ite 3/146 Go	ordon Street	t, Port I	Macqua	arie, NS	W, 2444. (j	ph) 02 65	84 7155	(fax)	02 65	84 716	0						ager:		lean		oca	ife			- SGS	
General And	alysis Requirements							_			-	1	_		2	_	JSa	mple	r:	Jai	Mes	Go	VSV	100		-			
	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1					<u> </u>			Yes (tic	k)				List)	O Lis					t P								Other Comm	ents on sample
	ind Time (please tick ish any sediment lay						TAT)					+		8260	A 827					f lat		4						(eg: high	voc, highly special detection etc etc)
	QA/QC reported wh											& T)		EPA	SEP	es				/pa C	1 13							limits	etc etc)
	aneous material rem						PM 5.1	12			-	C36 P	TPH	I (US	U) us	sticic				Noss		-							
Laboratory	Sample	Sample	Sample		N.A.	atrix		eservation	Con	tainers		(C6-(iated	Scar	C Sci	P Pe		ols	L	S*Cd	2 0								
Number	ID	Depth	Date	Time	Soil	Water	lce	Filter	(num	ber/type)	BTEX	TPH (C6-C9 P & T) + TPH (C10-C36)	Speciated TPH	VOC Scan (USEPA 8260 List)	SVOC Scan (USEPA 8270 List	OC OP Pesticides	PAH	Phenols	PCB	Metals* (dise	Malor							PED7672	7
1	MWOL					X	X		5×	plastic										X	(1		
2	MW02					\times	×												-	X	<								
3	MWO3					X	X											<1		>	(
4	MWOY				1	K	X													5	<								
5	MW05					X	X													×	<								
6	DUP01					×	X									1	-	-		×	1					-			
7	RINOI					X	X		Zx	Plastic								-	1	×								- I co I ml	and fots
8	Trip Blank					×			1	1	X	-						-	-							-		GII 2201 ACM	men for .
											/ .			-		+	+	-			+		-		-	-			
	-					+									-	-	-		-		-								
									1					-	-	-	-				-		-						
											7							-		-	-		-			-			
	14					+			-		-		-	-	-		-	-			-			-	-				1
							++				_						-		+		-		_						
						-			-		-		-	-		+	+		-				_						
						-							-						-										
						-			-				-	-	-	-		1									-		
			*										_											-					
									-				-		-		-				-		-					1 miles	man
Comments:	Inco			11 . 1													1				1.	Metals (circle)	1		-		-	
	INVOTICE	ann	reso	11) f	0	Sei	ah.	Scat	fee												5	is Cd	Cr C			b Zn	2		
Relinquished	by: Vand	Rich	and	Signed	#: V	fut	and	>		Da	ate/Tir	ne:	17	- (1 -	13	2	:15	ph P	leceive	d by:	Alex	Pic	kinso	m	~	Date/	Time: 19/4/13	Dan
Relinquished	by:			Signed	1						ate/Tir						-	-1	1	leceive							Date/	Time:	

AUSTRALIA-ENVIRONMENTAL-PERTH AIRPORT- PROFORMA -QU101

REGISTRATION DETAILS

APPROVED BY: R. MA 1L 500mL 500mL 500mL 250mL 250mL 125mL 1L 500mL 100mL 40mL 40mL 500mL 250mL 250mL 250mL 125mL 125mL 1L Other Ziplock Job-Number: Bottle Map Plastic Plastic Plastic Amber Plastic Plastic Plastic Amber Amber Amber Glass Glass Plastic Plastic Plastic Glass Glass Plastic Bag/ PE076727 Other Vial Vial Sample Numbers: Green Green Purple Green Green Red Jar Jar Lab Green Orange Green White HAA Blue Orange Brown Yellow 1-6 2 7 2 # of Eskies: 8 2 Eskijes 2 HB / ICE / None Temp: 18,4 °C Tray Numbers: W-164-165 a - 2 **Registration comments:** Action Taken: Received extra sample labulad as Trip Blank. Bottles are 2x40ml voc vials. - Book in for BTEX à Co-Cq as per HM. **Registered By:** 18/4/13 DR

_ CLIENT DETAILS		LABORATORY DETAILS	
Contact	Sean Scaife	Manager	Ros Ma
Client	ERM Australia Pty Ltd	Laboratory	SGS Newburn Environmental
Address	PO Box 7338 Cloisters Square Level 6, Grain Pool Bld, 172 St Georges Tce PERTH WA 6850	Address	10 Reid Rd Newburn WA 6105
Telephone	08 9321 5200	Telephone	(08) 9373 3500
Facsimile	08 9321 5262	Facsimile	(08) 9373 3556
Email	sean.scaife@erm.com	Email	au.environmental.perth@sgs.com
Project	0086269 YARA TANPF Burrup	Samples Received	Thu 18/4/2013
Order Number	A06995	Report Due	Fri 26/4/2013
Samples	8	SGS Reference	PE076727

SUBMISSION DETAILS

This is to confirm that 8 samples were received on Thursday 18/4/2013. Results are expected to be ready by Friday 26/4/2013. Please quote SGS reference PE076727 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix	8 Water	Type of documentation received	COC
Date documentation received	18/4/2013	Samples received in good order	Yes
Samples received without headspace	Yes	Sample temperature upon receipt	18°C
Sample container provider	SGS	Turnaround time requested	Standard
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes
Sample cooling method	lce	Samples clearly labelled	Yes
Complete documentation received	Yes	Number of eskies/boxes received	2

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS _

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services 10 Reid Rd PO Box 32

Rd Newburn WA 6105 32 Welshpool WA 6983 Australia Australia t +61 8 9373 3500 f +61 8 9373 3556

www.au.sgs.com

Project

Client

CLIENT DETAILS _

0086269 YARA TANPF Burrup

SUMMARY OF ANALYSIS

ERM Australia Pty Ltd

No.	Sample ID	Acidity and Free CO2	Alkalinity	Chloride by Discrete Analyser in Water	Colour by Discrete Analyser	Fluoride by Ion Selective Electrode in Water	Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA	Sulphate in water	Sulphide by Titration in Water	Total and Volatile Suspended Solids (TSS /
001	MW01	1	3	1	1	1	5	1	1	1
002	MW02	1	3	1	1	1	5	1	1	1
003	MW03	1	3	1	1	1	5	1	1	1
004	MW04	1	3	1	1	1	5	1	1	1
005	MW05	1	3	1	1	1	5	1	1	1
006	DUP01	1	3	1	1	1	5	1	1	1
007	RIN01	-	3	1	-	-	-	1	-	-

CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction.

__ CLIENT DETAILS _

Client

ERM Australia Pty Ltd

Project

0086269 YARA TANPF Burrup

SUMMARY	OF	
SOMMAN	01	ANALISIS

No.	Sample ID	Filterable Reactive Phosphorus (FRP)	Low Level Ammonia Nitrogen by FIA	Mercury (dissolved) in Water	Mercury (total) in Water	Metals in Water (Dissolved) by ICPOES	TKN Kjeldahl Digestion by Discrete Analyser	Total Phosphorus by Kjeldahl Digestion DA in	Trace Metals (Dissolved) in Water by ICPMS	Trace Metals (Total) in Water by ICPMS	Volatile Petroleum Hydrocarbons in Water
001	MW01	1	2	-	-	6	2	1	11	2	-
002	MW02	1	2	-	-	6	2	1	11	2	-
003	MW03	1	2	-	-	6	2	1	11	2	-
004	MW04	1	2	-	-	6	2	1	11	2	-
005	MW05	1	2	-	-	6	2	1	11	2	-
006	DUP01	1	2	-	-	6	2	1	11	2	-
007	RIN01	-	-	1	1	4	-	-	7	7	-
008	Trip Blank	-	-	-	-	-	-	-	-	-	5

CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction.

50144			
ent ERM Aus	stralia Pty Ltd	Project	0086269 YARA TANPF Burrup
SUMMARY OF ANALYSIS			
No. Sample ID	VOCs in Water		
008 Trip Blank	11		

The above table represents SGS Environmental Services interpretation of the client-supplied Chain Of Custody document The numbers shown in the table indicate the number of results requested in each package.

Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction.

- CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Sean Scaife	Manager	Ros Ma
Client	ERM Australia Pty Ltd	Laboratory	SGS Newburn Environmental
Address	PO Box 7338 Cloisters Square Level 6, Grain Pool Bld, 172 St Georges Tce PERTH WA 6850	Address	10 Reid Rd Newburn WA 6105
Telephone	08 9321 5200	Telephone	(08) 9373 3500
Facsimile	08 9321 5262	Facsimile	(08) 9373 3556
Email	sean.scaife@erm.com	Email	au.environmental.perth@sgs.com
Project	0086269 YARA TANPF Burrup	SGS Reference	PE076727 R0
Order Number	A06995	Report Number	0000060075
Samples	8	Date Reported	30 Apr 2013
		Date Received	18 Apr 2013

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(898/20210).

Samples were diluted due to high conductivity for metals. Hence the LORs were raised.

SIGNATORIES

homonol

Leanne Orsmond Inorganics Coordinator

Ohmar David Metals Chemist

Lien Tang Project Manager

Qela Beady

Orla Brady Organic Supervisor (VOC/TRH)

welgm

Michael McKay Inorganic Team Leader - Waters

rospla

Ros Ma Laboratory Manager

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services 10 Reid Rd PO Box 32

d Newburn WA 6105 2 Welshpool WA 6983 Australia t +61 8 9 Australia

t +61 8 9373 3500 f +61 8 9373 3556

www.au.sgs.com

PE076727 R0

	Sa	nple Number ample Matrix Sample Date ample Name	PE076727.001 Water 17 Apr 2013 MW01	PE076727.002 Water 17 Apr 2013 MW02	PE076727.003 Water 17 Apr 2013 MW03	PE076727.004 Water 17 Apr 2013 MW04
Parameter	Units	LOR				
Total and Volatile Suspended Solids (TSS / VSS) Method: A	N114					
Total Suspended Solids Dried at 105°C	mg/L	5	16	290	470	210
Acidity and Free CO2 Method: AN140						
Acidity to pH 8.3	mg CaCO3/L	5	46	44	91	21
Alkalinity Method: AN135						
Total Alkalinity as CaCO3	mg/L	5	290	340	560	390
Carbonate Alkalinity as CO3	mg/L	1	<1	<1	<1	<1
Bicarbonate Alkalinity as HCO3	mg/L	5	350	410	680	470
Colour by Discrete Analyser Method: AN285						
Colour (True)	Hazen	1	<1	<1	17	<1
Fluoride by Ion Selective Electrode in Water Method: AN141 Fluoride by ISE	mg/L	0.1	0.4	0.6	1.0	0.4
	_					
Chloride by Discrete Analyser in Water Method: AN274						
Chloride	mg/L	1	560	1100	28000	4700
Sulphate in water Method: AN275						
Sulphate	mg/L	1	120	200	1400	440
Sulphide by Titration in Water Method: AN149						
Sulphide	mg/L	0.5	<0.5	<0.5	<0.5	<0.5
Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA Method: A	AN258					
Nitrate, NO ₃ as NO ₃	mg/L	0.05	9.7	2.3	0.14	1.0
Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.005	2.2	0.51	0.031	0.24
Nitrite Nitrogen, NO ₂ as N	mg/L	0.005	0.022	<0.005	<0.005	<0.005
	1	1				

0.005

0.05

mg/L

mg/L

2.2

0.07

0.51

<0.05

0.031

<0.05

0.24

<0.05

Nitrate Nitrogen, NO3 as N

Nitrite, NO2 as NO2

	s	nple Number ample Matrix Sample Date Sample Name	PE076727.001 Water 17 Apr 2013 MW01	PE076727.002 Water 17 Apr 2013 MW02	PE076727.003 Water 17 Apr 2013 MW03	PE076727.004 Water 17 Apr 2013 MW04
Parameter	Units	LOR				
Low Level Ammonia Nitrogen by FIA Method: AN261						
Ammonia Nitrogen, NH₃ as N	mg/L	0.005	<0.005	<0.005	0.77	<0.005
Ammonia, NH ₃	mg/L	0.005	<0.005	<0.005	0.94	<0.005
TKN Kjeldahl Digestion by Discrete Analyser Method: AN28	1					
Total Kjeldahl Nitrogen	mg/L	0.05	0.15	0.21	1.5	0.49
Total Nitrogen (calc)	mg/L	0.05	2.4	0.72	1.5	0.73
Total Phosphorus by Kjeldahl Digestion DA in Water Method	d: AN279/AN29)3			i	
Total Phosphorus (Kjeldahl Digestion)	mg/L	0.01	0.02	0.10	0.16	0.05
Filterable Reactive Phosphorus (FRP) Method: AN278 Filterable Reactive Phosphorus	mg/L	0.002	0.004	0.003	0.006	0.010
Metals in Water (Dissolved) by ICPOES Method: AN320/AN3	321 mg/L	0.2	160	160	350	94
Magnesium, Mg	mg/L	0.1	49	100	910	190
	5					190
Potassium, K	mg/L	0.1	8.2	23	340	190
	mg/L mg/L	0.1	8.2 33	23 28	340	
Silica, Soluble						120
Potassium, K Silica, Soluble Silicon, Si Sodium, Na	mg/L	0.05	33	28	30	120 23
Silica, Soluble Silicon, Si Sodium, Na	mg/L mg/L mg/L	0.05	33 16	28 13	30 14	120 23 11
Silica, Soluble Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318	mg/L mg/L mg/L	0.05	33 16	28 13	30 14	120 23 11
Silica, Soluble Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al Arsenic, As	mg/L mg/L mg/L	0.05 0.02 0.5 5 1	33 16 270 <5 <1	28 13 610 <5 <1	30 14 8000 72 <101	120 23 11 2600 31 <5†
Silica, Soluble Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al Arsenic, As Cadmium, Cd	mg/L mg/L mg/L μg/L μg/L μg/L	0.05 0.02 0.5 5 1 0.1	33 16 270 <5 <1 0.4	28 13 610 <5 <1 0.3	30 14 8000 72 <10↑ <1.0↑	120 23 11 2600 31 <5↑ <0.5↑
Silica, Soluble Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al Arsenic, As Cadmium, Cd Chromium, Cr	mg/L mg/L mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 0.02 0.5 0.5 5 1 0.1 1	33 16 270 <5 <1 0.4 <1	28 13 610 <5 <1 0.3 <1	30 14 8000 72 <10 t <1.0 t <10 t	120 23 11 2600 31 <5† <0.5† <5†
Silica, Soluble Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/L mg/L mg/L g/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 0.02 0.5 5 1 0.1 1 1 1	33 16 270 <5 <1 0.4 <1 1	28 13 610 <5 <1 0.3 <1 <1 <1	30 14 8000 72 <10 t <1.0 t <10 t <10 t <10 t	120 23 11 2600 31 <51 <0.51 <51 <51
Silica, Soluble Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu ron, Fe	mg/L mg/L mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 0.02 0.5 5 1 0.1 1 5	33 16 270 <5 <1 0.4 <1 1 <5	28 13 610 <5 <1 0.3 <1 <1 <1 <5	30 14 8000 72 <101 <1.01 <101 <101 520	120 23 11 2600 31 <5↑ <0.5↑ <5↑ <5↑ <25↑
Silica, Soluble Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Iron, Fe Lead, Pb	mg/L mg/L mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 0.02 0.5 5 1 0.1 1 5 1 1 5 1	33 16 270 <5 <1 0.4 <1 1 <5 <1	28 13 610 <5 <1 0.3 <1 <1 <1 <5 <5 <1	30 14 8000 72 <101 <1.01 <1.01 <101 520 <101	120 23 11 2600 31 <51 <0.51 <51 <51 <251 <51
Silica, Soluble Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al Arsenic, As Cadmium, Cd Cadmium, Cd Chromium, Cr Copper, Cu Iron, Fe Lead, Pb Manganese, Mn	mg/L mg/L mg/L mg/L μg/L	0.05 0.02 0.5 5 1 0.1 1 5 1 1 5 1	33 16 270 <5 <1 0.4 <1 1 <5 <1 1 <5 <1 87	28 13 610 <5 <1 0.3 <1 <1 <1 <5 <1 <1 22	30 14 8000 72 <101 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01 <1.01	120 23 11 2600 31 <51 <0.51 <51 <251 <251 <51 120
Silica, Soluble Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al Arsenic, As Cadmium, Cd Cadmium, Cd Chromium, Cr Copper, Cu Iron, Fe Lead, Pb Manganese, Mn Nickel, Ni	mg/L mg/L mg/L mg/L µg/L µg/L	0.05 0.02 0.5 5 1 0.1 1 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33 16 270 <5 <1 0.4 <1 1 <5 <1 1 <5 <1 87 <1	28 13 610 <5 <1 0.3 <1 <1 <1 <5 <1 12 <1	30 14 8000 72 <101 <101 <101 <101 520 <101 1700 <101	120 23 11 2600 31 <51 <0.51 <51 <51 <251 <51 120 <51
Silica, Soluble Silicon, Si Sodium, Na	mg/L mg/L mg/L mg/L μg/L	0.05 0.02 0.5 5 1 0.1 1 5 1 1 5 1	33 16 270 <5 <1 0.4 <1 1 <5 <1 1 <5 <1 87	28 13 610 <5 <1 0.3 <1 <1 <1 <5 <1 <1 22	30 14 8000 72 <101 <1.01 <1.01 <101 520 <101 1700	120 23 11 2600 31 <51 <51 <51 <251 <51 <51 120

Mercury	mg/L	0.00005	-	-	-	-

	\$	mple Number Sample Matrix Sample Date Sample Name	Water 17 Apr 2013	PE076727.002 Water 17 Apr 2013 MW02	PE076727.003 Water 17 Apr 2013 MW03	PE076727.004 Water 17 Apr 2013 MW04
Parameter	Units	LOR				
Trace Metals (Total) in Water by ICPMS Method: AN318						
Total Aluminium	µg/L	5	330	3500	14000	4400
Total Arsenic	µg/L	1	-	-	-	-
Total Cadmium	µg/L	0.1	-	-	-	-
Total Chromium	µg/L	1	-	-	-	-
Total Copper	µg/L	1	-	-	-	-
Total Iron	µg/L	5	390	5200	21000	7400
Total Lead	µg/L	1	-	-	-	-
Total Nickel	µg/L	1	-	-	-	-
Total Zinc	µg/L	5	-	-	-	-
Total Mercury Volatile Petroleum Hydrocarbons in Water Method: AN433/A	mg/L	0.0001	-	-	-	-
TRH C6-C9	µg/L	40	_	_	-	
Surrogates	FU					
*	9/					
Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	%	-	-	-	-	-
d4-1,2-dichloroetnane (Surrogate) d8-toluene (Surrogate)	%		-	-	-	
	%	-		-		-
Bromofluorobenzene (Surrogate)	70	-	-	-	-	-
VOCs in Water Method: AN433/AN434						
Monocyclic Aromatic Hydrocarbons						
Benzene	µg/L	0.5	-	-	-	-

Benzene	µg/L	0.5	-	-	-	-
Toluene	µg/L	0.5	-	-	-	-
Ethylbenzene	µg/L	0.5	-	-	-	-
m/p-xylene	µg/L	1	-	-	-	-
o-xylene	µg/L	0.5	-	-	-	-

		Imple Numbe Sample Matriz Sample Date Sample Name	k Water e 17 Apr 2013	PE076727.002 Water 17 Apr 2013 MW02	PE076727.003 Water 17 Apr 2013 MW03	PE076727.004 Water 17 Apr 2013 MW04
Parameter	Units	LOR				
VOCs in Water Method: AN433/AN434 (continued) Oxygenated Compounds						
MtBE (Methyl-tert-butyl ether)	μg/L	0.5	-	-	-	-
Polycyclic VOCs						
Naphthalene	µg/L	0.5	-	-	-	-
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	-	-	-	-
d4-1,2-dichloroethane (Surrogate)	%	-	-	-	-	-
d8-toluene (Surrogate)	%	-	-	-	-	-
Bromofluorobenzene (Surrogate)	%	-	-	-	-	-

PE076727 R0

	Sa	nple Number ample Matrix Sample Date ample Name	PE076727.005 Water 17 Apr 2013 MW05	PE076727.006 Water 17 Apr 2013 DUP01	PE076727.007 Water 17 Apr 2013 RIN01	PE076727.008 Water 17 Apr 2013 Trip Blank					
Parameter	Units	LOR									
Total and Volatile Suspended Solids (TSS / VSS) Method: AN	114										
Total Suspended Solids Dried at 105°C	mg/L	5	1600	1400	-	-					
Acidity and Free CO2 Method: AN140											
Acidity to pH 8.3	mg CaCO3/L	5	58	57	-	-					
Alkalinity Method: AN135											
Total Alkalinity as CaCO3	mg/L	5	170	170	<5	-					
Carbonate Alkalinity as CO3	mg/L	1	<1	<1	<1	-					
Bicarbonate Alkalinity as HCO3	mg/L	5	210	210	<5	-					
Colour by Discrete Analyser Method: AN285											
Colour (True)	Hazen	1	<1	<1	-	-					
Fluoride by Ion Selective Electrode in Water Method: AN141											
Fluoride by ISE	mg/L	0.1	0.4	0.4	-	-					
Chloride by Discrete Analyser in Water Method: AN274											
Chloride	mg/L	1	58000	56000	<1	-					
Sulphate in water Method: AN275											
Sulphate	mg/L	1	3300	3400	<1	-					
Sulphide by Titration in Water Method: AN149											
Sulphide	mg/L	0.5	<0.5	<0.5	-	-					
Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA Method: A	N258										
Nitrate, NO ₃ as NO ₃	mg/L	0.05	6.9	6.9	-	-					
Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.005	1.6	1.6	-	-					
Nitrite Nitrogen, NO ₂ as N	mg/L	0.005	<0.005	<0.005	-	-					
Nitrite Nitrogen, NO₂ as N	mg/L	0.005	<0.005	<0.005	-	-					

0.005

0.05

mg/L

mg/L

1.6

<0.05

1.6

<0.05

-

-

-

Nitrate Nitrogen, NO3 as N

Nitrite, NO2 as NO2

	S	nple Number ample Matrix Sample Date Sample Name	PE076727.005 Water 17 Apr 2013 MW05	PE076727.006 Water 17 Apr 2013 DUP01	PE076727.007 Water 17 Apr 2013 RIN01	PE076727.008 Water 17 Apr 2013 Trip Blank
Parameter	Units	LOR				
Low Level Ammonia Nitrogen by FIA Method: AN261						
Ammonia Nitrogen, NH₃ as N	mg/L	0.005	<0.005	<0.005	-	-
Ammonia, NH ₃	mg/L	0.005	<0.005	<0.005	-	-
TKN Kjeldahl Digestion by Discrete Analyser Method: AN281						
Total Kjeldahl Nitrogen	mg/L	0.05	1.0	0.98	-	-
Total Nitrogen (calc)	mg/L	0.05	2.6	2.5	-	-
Total Phosphorus by Kjeldahl Digestion DA in Water Method:	AN279/AN29	93				
Total Phosphorus (Kjeldahl Digestion)	mg/L	0.01	0.16	0.16	-	-
Filterable Reactive Phosphorus Metals in Water (Dissolved) by ICPOES Method: AN320/AN32	mg/L	0.002	0.014	0.012	-	-
Calcium, Ca	mg/L	0.2	740	740	<0.2	-
Magnesium, Mg	mg/L	0.1	2900	2900	<0.1	
Potassium, K						-
	mg/L	0.1	1400	1400	<0.1	-
Silica, Soluble	mg/L mg/L	0.1	1400 13			
Silica, Soluble Silicon, Si				1400	<0.1	-
Silica, Soluble Silicon, Si Sodium, Na	mg/L	0.05	13	1400 13	<0.1 -	-
Silicon, Si	mg/L mg/L	0.05	13 6.0	1400 13 6.0	<0.1 - -	-
Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318	mg/L mg/L	0.05	13 6.0	1400 13 6.0	<0.1 - -	-
Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al	mg/L mg/L mg/L	0.05 0.02 0.5	13 6.0 33000	1400 13 6.0 33000	<0.1 - - <0.5	
Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al Arsenic, As Cadmium, Cd	mg/L mg/L mg/L μg/L	0.05 0.02 0.5 5 1 0.1	13 6.0 33000 3000 <50 t <5.0 t	1400 13 6.0 33000 3300 <50 † <5.0 †	<0.1 - - <0.5 - <1 <0.1	
Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al Arsenic, As Cadmium, Cd Chromium, Cr	mg/L mg/L mg/L μg/L μg/L μg/L μg/L	0.05 0.02 0.5 5 1 0.1 1	13 6.0 33000 3000 <50↑ <5.0↑ <5.0↑	1400 13 6.0 33000 3300 <501 <5.01 <501	<0.1 - - <0.5 - <1 <0.1 <1	- - - - - -
Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/L mg/L mg/L μg/L μg/L μg/L μg/L μg/L	0.05 0.02 0.5 5 1 0.1 1 1 1	13 6.0 33000 <50 † <5.0 † <50 † <50 †	1400 13 6.0 33000 3300 <501 <501 <501 <501	<0.1 - - <0.5 - <1 <0.1 <1 <1 <1 <1 <1	- - - - - - - - - - - - - - - - - - -
Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Iron, Fe	mg/L mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 0.02 0.5 5 1 0.1 1 5	13 6.0 33000 3000 <50 † <5.0 † <50 † <50 † <50 †	1400 13 6.0 33000 33000 330 <501 <501 <501 <501 <2501	-0.1 - - <0.5 - <1 <0.1 <1 <1 <1 <1 <1 -	- - - - - - - - - - - -
Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al Arsenic, As Cadmium, Cd Cadmium, Cd Chromium, Cr Copper, Cu Iron, Fe Lead, Pb	mg/L mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 0.02 0.5 5 1 0.1 1 1 5 5 1 1 1 5 1	13 6.0 33000 <50 t <5.0 t <5.0 t <50 t <250 t <250 t <50 t	1400 13 6.0 33000 3300 <501 <501 <501 <501 <2501 <501 <501	<0.1 - - <0.5 - <1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	- - - - - - - - - - - - - - - - - - -
Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al Arsenic, As Cadmium, Cd Cadmium, Cd Chromium, Cr Copper, Cu Iron, Fe Lead, Pb Manganese, Mn	mg/L mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0.05 0.02 0.5 5 1 0.1 1 1 5 1 1 5 1 1 1	13 6.0 33000 3000 <50 t <50 t <50 t <50 t <50 t <50 t <50 t <50 t	1400 13 6.0 33000 3300 <501 <501 <501 <501 <501 <501 <501	<0.1 - - <0.5 - <1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	- - - - - - - - - - - - - - - - - - -
Silicon, Si Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al Arsenic, As Cadmium, Cd Cadmium, Cd Chromium, Cr Copper, Cu Iron, Fe Lead, Pb Manganese, Mn Nickel, Ni	mg/L mg/L mg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µ	0.05 0.02 0.5 5 1 0.1 1 1 5 1 1 1 1 1 1 1 1 1	13 6.0 33000 3000 <50 t <50 t <50 t <50 t <50 t <50 t <50 t <50 t <50 t <50 t	1400 13 6.0 33000 3300 <501 <501 <501 <501 <501 <501 <501 <5	<0.1 - - <0.5 - <1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	- - - - - - - - - - - - - - - - - - -
Silicon, Si Sodium, Na	mg/L mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0.05 0.02 0.5 5 1 0.1 1 1 5 1 1 5 1 1 1	13 6.0 33000 3000 <50 t <50 t <50 t <50 t <50 t <50 t <50 t <50 t	1400 13 6.0 33000 3300 <501 <501 <501 <501 <501 <501 <501	<0.1 - - <0.5 - <1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	- - - - - - - - - - - - - - - - - - -

Mercu	ry (dissolve	d) in Water	Method: AN	311/AN312

	Mercury	mg/L	0.00005	-	-	<0.00005	-
--	---------	------	---------	---	---	----------	---

	s	mple Number sample Matrix Sample Date Sample Name	PE076727.005 Water 17 Apr 2013 MW05	PE076727.006 Water 17 Apr 2013 DUP01	PE076727.007 Water 17 Apr 2013 RIN01	PE076727.008 Water 17 Apr 2013 Trip Blank
Parameter	Units	LOR				
Trace Metals (Total) in Water by ICPMS Method: AN318						
Total Aluminium	µg/L	5	33000	30000	-	-
Total Arsenic	μg/L	1	-	-	<1	-
Total Cadmium	μg/L	0.1	-	-	<0.1	-
Total Chromium	μg/L	1	-	-	<1	-
Total Copper	μg/L	1	-	-	<1	-
Total Iron	μg/L	5	44000	41000	-	-
Total Lead	μg/L	1	-	-	<1	-
Total Nickel	μg/L	1	-	-	<1	-
Total Zinc	µg/L	5	-	-	10	-
Total Mercury	mg/L	0.0001	-	-	<0.0001	-
Volatile Petroleum Hydrocarbons in Water Method: AN43	3/AN434/AN410					
TRH C6-C9	µg/L	40	-	-	-	<40
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	-	-	-	99
d4-1,2-dichloroethane (Surrogate)	%	-	-	-	-	97
d8-toluene (Surrogate)	%	-	-	-	-	120
Bromofluorobenzene (Surrogate)	%	-	-	-	-	123
VOCs in Water Method: AN433/AN434						
Monocyclic Aromatic Hydrocarbons						
Benzene	µg/L	0.5	-	-	-	<0.5

Benzene	µg/L	0.5	-	-	-	<0.5
Toluene	µg/L	0.5	-	-	-	<0.5
Ethylbenzene	µg/L	0.5	-	-	-	<0.5
m/p-xylene	µg/L	1	-	-	-	<1
o-xylene	µg/L	0.5	-	-	-	<0.5

	s	mple Number ample Matrix Sample Date Sample Name	Water 17 Apr 2013	PE076727.006 Water 17 Apr 2013 DUP01	PE076727.007 Water 17 Apr 2013 RIN01	PE076727.008 Water 17 Apr 2013 Trip Blank
Parameter	Units	LOR				
VOCs in Water Method: AN433/AN434 (continued) Oxygenated Compounds						
MtBE (Methyl-tert-butyl ether)	μg/L	0.5	-	-	-	<0.5
Polycyclic VOCs						
Naphthalene	µg/L	0.5	-	-	-	<0.5
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	-	-	-	99
d4-1,2-dichloroethane (Surrogate)	%	-	-	-	-	97
d8-toluene (Surrogate)	%	-	-	-	-	120
Bromofluorobenzene (Surrogate)	%	-	-	-	-	123

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Acidity and Free CO2 Method: ME-(AU)-[ENV]AN140

Parameter	QC	Units	MB	DUP %RPD	
	Reference				
Acidity to pH 8.3	LB062657	mg CaCO3/L	5	<5	1%

Alkalinity Method: ME-(AU)-[ENV]AN135

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Alkalinity as CaCO3	LB062656	mg/L	5	<5	0%	91%
Carbonate Alkalinity as CO3	LB062656	mg/L	1	<1		
Bicarbonate Alkalinity as HCO3	LB062656	mg/L	5	<5		

Chloride by Discrete Analyser in Water Method: ME-(AU)-[ENV]AN274

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Chloride	LB062899	mg/L	1	<1	1 - 5%	101%	93 - 96%

Colour by Discrete Analyser Method: ME-(AU)-[ENV]AN285

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Colour (True)	LB062679	Hazen	1	<1	0%	98 - 101%

Filterable Reactive Phosphorus (FRP) Method: ME-(AU)-[ENV]AN278

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Filterable Reactive Phosphorus	LB062623	mg/L	0.002	<0.002	0 - 4%	108%	115%

Fluoride by Ion Selective Electrode in Water Method: ME-(AU)-[ENV]AN141

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Fluoride by ISE	LB062935	mg/L	0.1	<0.1	0 - 3%	104%	106%
	LB063107	mg/L	0.1	<0.1	0 - 6%	100%	104 - 110%

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Low Level Ammonia Nitrogen by FIA Method: ME-(AU)-[ENV]AN261

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Ammonia Nitrogen, NH₃ as N	LB063004	mg/L	0.005	<0.005	0%	93 - 96%
Ammonia, NH ₃	LB063004	mg/L	0.005	<0.005	0%	93 - 96%

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311/AN312

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Mercury	LB062798	mg/L	0.00005	<0.00005	0%	106%	94%

Mercury (total) in Water Method: ME-(AU)-[ENV]AN311/AN312

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Total Mercury	LB062795	mg/L	0.0001	<0.0001	0%	106%	101%

Metals in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN320/AN321

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Calcium, Ca	LB062598	mg/L	0.2	<0.2	0 - 5%	96%	
Magnesium, Mg	LB062598	mg/L	0.1	<0.1	0 - 4%	98%	
Potassium, K	LB062598	mg/L	0.1	<0.1	0 - 4%	109%	
Silica, Soluble	LB062598	mg/L	0.05	<0.05			
Silicon, Si	LB062598	mg/L	0.02	<0.02	4%	105%	
Sodium, Na	LB062598	mg/L	0.5	<0.5	0 - 5%	101%	105%

Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA Method: ME-(AU)-[ENV]AN258

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Nitrate, NO ₃ as NO ₃	LB063004	mg/L	0.05	<0.05		
Nitrate/Nitrite Nitrogen, NOx as N	LB063004	mg/L	0.005	<0.005	0 - 38%	99 - 113%
Nitrite Nitrogen, NO₂ as N	LB063004	mg/L	0.005	<0.005	0%	97 - 99%
Nitrate Nitrogen, NO ₃ as N	LB063004	mg/L	0.005	<0.005		
Nitrite, NO ₂ as NO ₂	LB063004	mg/L	0.05	<0.05		

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Sulphate in water Method: ME-(AU)-[ENV]AN275

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Sulphate	LB062899	mg/L	1	<1	0 - 4%	98 - 101%	99 - 110%

Sulphide by Titration in Water Method: ME-(AU)-[ENV]AN149

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Sulphide	LB062681	mg/L	0.5	<0.5	92%

TKN Kjeldahl Digestion by Discrete Analyser Method: ME-(AU)-[ENV]AN281

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Kjeldahl Nitrogen	LB062640	mg/L	0.05	<0.05	3 - 10%	101%

Total and Volatile Suspended Solids (TSS / VSS) Method: ME-(AU)-[ENV]AN114

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Suspended Solids Dried at 105°C	LB062689	mg/L	5	<5	4%	100%

Total Phosphorus by Kjeldahl Digestion DA in Water Method: ME-(AU)-[ENV]AN279/AN293

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Phosphorus (Kjeldahl Digestion)	LB062640	mg/L	0.01	<0.01	1 - 11%	96%

Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Aluminium, Al	LB062606	µg/L	5	<5		104%	77%
Arsenic, As	LB062606	µg/L	1	<1	0%	98%	103%
Cadmium, Cd	LB062606	µg/L	0.1	<0.1	0%	95%	87%
Chromium, Cr	LB062606	µg/L	1	<1	0%	100%	99%
Copper, Cu	LB062606	µg/L	1	<1	0%	97%	83%
Iron, Fe	LB062606	µg/L	5	<5		105%	98%
Lead, Pb	LB062606	µg/L	1	<1	0%	105%	87%
Manganese, Mn	LB062606	µg/L	1	<1		99%	107%
Nickel, Ni	LB062606	µg/L	1	<1	0%	99%	85%
Selenium, Se	LB062606	µg/L	2	<2		112%	107%
Zinc, Zn	LB062606	µg/L	5	<5	2%	96%	85%

QC SUMMARY

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Trace Metals (Total) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Total Aluminium	LB062610	µg/L	5	<5	14%	120%	94%
Total Arsenic	LB062610	µg/L	1	<1	0%	96%	
Total Cadmium	LB062610	µg/L	0.1	<0.1	0%	111%	
Total Chromium	LB062610	µg/L	1	<1	0%	116%	
Total Copper	LB062610	µg/L	1	<1	0%	119%	
Total Iron	LB062610	µg/L	5	<5	7%	108%	
Total Lead	LB062610	µg/L	1	<1	0%	113%	
Total Nickel	LB062610	µg/L	1	<1	0%	93%	
Total Zinc	LB062610	μg/L	5	<5	13%	96%	

VOCs in Water Method: ME-(AU)-[ENV]AN433/AN434

Monocyclic Aromatic Hydrocarbons

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Benzene	LB062719	µg/L	0.5	<0.5	111%
Toluene	LB062719	µg/L	0.5	<0.5	107%
Ethylbenzene	LB062719	µg/L	0.5	<0.5	101%
m/p-xylene	LB062719	µg/L	1	<1	
o-xylene	LB062719	µg/L	0.5	<0.5	

Oxygenated Compounds

Parameter	QC Reference	Units	LOR	МВ
MtBE (Methyl-tert-butyl ether)	LB062719	µg/L	0.5	<0.5

Polycyclic VOCs

Parameter	QC		LOR	MB
	Reference			
Naphthalene	LB062719	µg/L	0.5	<0.5

Surrogates

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Dibromofluoromethane (Surrogate)	LB062719	%	-	100%	119%
d4-1,2-dichloroethane (Surrogate)	LB062719	%	-	101%	119%
d8-toluene (Surrogate)	LB062719	%	-	108%	129%
Bromofluorobenzene (Surrogate)	LB062719	%	-	104%	124%

QC SUMMARY

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433/AN434/AN410

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
TRH C6-C9	LB062719	µg/L	40	<40	99%

,	Surrogates					
	Parameter	QC	Units	LOR	MB	LCS
		Reference				%Recovery
L	Dibromofluoromethane (Surrogate)	LB062719	%	-	100%	119%
Г	d4-1,2-dichloroethane (Surrogate)	LB062719	%	-	101%	119%
Г	d8-toluene (Surrogate)	LB062719	%	-	108%	129%
	Bromofluorobenzene (Surrogate)	LB062719	%	-	104%	124%

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN114	Total Suspended and Volatile Suspended Solids: The sample is homogenised by shaking and a known volume is filtered through a pre-weighed GF/C filter paper and washed well with deionised water. The filter paper is dried and reweighed. The TSS is the residue retained by the filter per unit volume of sample. Reference APHA 2540 D. Internal Reference AN114
AN135	Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre) and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135
AN135	Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L. If TDS is >500mg/L free or total carbon dioxide cannot be reported. APHA4500CO2 D.
AN140	Acidity by Tritration: The water sample is titrated with sodium hydroxide to designated pH end point. In a sample containing only carbon dioxide, bicarbonates and carbonates, titration to pH 8.3 at 25°C corresponds to stoichiometric neutralisation of carbonic acid to bicarbonate. Method reference APHA 2310 B.
AN141	Determination of Fluoride by ISE: A fluoride ion selective electrode and reference electrode combination, in the presence of a pH/complexation buffer, is used to determine the fluoride concentration. The electrode millivolt response is measured logarithmically against fluoride concentration. Reference APHA F- C.
AN149	Sulphide by Iodometric Titration: Sulphide is precipitated as zinc sulphide to overcome interferences with sulphite and thiosulphate. After filtration, sulphide is determined titrimetrically. Reference APHA 4500-S2-
AN258	Nitrate and Nitrite by FIA: In an acidic medium, nitrate is reduced quantitatively to nitrite by cadmium metal. This nitrite plus any original nitrite is determined as an intense red-pink azo dye at 540 nm following diazotisation with sulphanilamide and subsequent coupling with N-(1-naphthyl) ethylenediamine dihydrochloride. Without the cadmium reduction only the original nitrite is determined. Reference APHA 4500-NO3- F.
AN261	Ammonia by Continuous Flow Analyser: Ammonium in a basic medium forms ammonia gas, which is separated from the sample matrix by diffusion through a polypropylene membrane. The ammonia is reacted with phenol and hypochlorite to form indophenol blue at an intensity proportional to the ammonia concentration. The blue colour is intensified with sodium nitroprusside and the absorbance measured at 630 nm. The sensitivity of the automated method is 10-20 times that of the macro method. Reference APHA 4500-NH3 H.
AN274	Chloride by Aquakem DA: Chloride reacts with mercuric thiocyanate forming a mercuric chloride complex. In the presence of ferric iron, highly coloured ferric thiocyanate is formed which is proportional to the chloride concentration. Reference APHA 4500CI-
AN275	Sulphate by Aquakem DA: Sulphate is precipitated in an acidic medium with barium chloride. The resulting turbidity is measured photometrically at 405nm and compared with standard calibration solutions to determine the sulphate concentration in the sample. Reference APHA 4500-SO42 Internal reference AN275.
AN278	Reactive Phosphorus by DA: Orthophosphate reacts with ammonium molybdate (Mo VI) and potassium antimonyl tartrate (Sb III) in acid medium to form an antimony-phosphomolybdate complex. This complex is subsequently reduced with ascorbic acid to form a blue colour and the absorbance is read at 880 nm. The sensitivity of the automated method is 10-20 times that of the macro method. Reference APHA 4500-P F
AN279/AN293	The sample is digested with Sulphuric acid, K2SO4 and CuSO4. All forms of phosphorus are converted into orthophosphate. The digest is cooled and placed on the discrete analyser for colorimetric analysis.

METHOD SUMMARY

METHOD	
	METHODOLOGY SUMMARY
AN281	An unfiltered water or soil sample is first digested in a block digestor with sulphuric acid, K2SO4 and CuSO4. The ammonia produced following digestion is then measured colourimetrically using the Aquakem 250 Discrete Analyser. A portion of the digested sample is buffered to an alkaline pH, and interfering cations are complexed. The ammonia then reacts with salicylate and hypochlorite to give a blue colour whose absorbance is measured at 660nm and compared with calibration standards. This is proportional to the concentration of Total Kjeldahl Nitrogen in the original sample.
AN285	The term 'colour' is used here to mean true colour, that is, the colour of water from which turbidity has been removed. The term 'apparent colour' includes not only colour due to substances in solution, but also that due to suspended matter. Apparent colour is determined on the original sample without filtration.
AN311/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN320/AN321	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320/AN321	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
AN433/AN434	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN433/AN434/AN410	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES

- IS Insufficient sample for analysis. LNR Sample listed, but not received.
- * This analysis is not covered by the scope of
- accreditation.
- Indicative data, theoretical holding time exceeded.Performed by outside laboratory.
- LOR Limit of Reporting
- ↑↓ Raised or Lowered Limit of Reporting
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte
- NVL Not Validated

Samples analysed as received. Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au.pv.sgsv3/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.au.sgs.com/terms_and_conditions_au. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Sean Scaife	Manager	Ros Ma
Client	ERM Australia Pty Ltd	Laboratory	SGS Newburn Environmental
Address	PO Box 7338 Cloisters Square Level 6, Grain Pool Bld, 172 St Georges Tce PERTH WA 6850	Address	10 Reid Rd Newburn WA 6105
Telephone	08 9321 5200	Telephone	(08) 9373 3500
Facsimile	08 9321 5262	Facsimile	(08) 9373 3556
Email	sean.scaife@erm.com	Email	au.environmental.perth@sgs.com
Project	0086269 YARA TANPF Burrup	SGS Reference	PE076727 R0
Order Number	A06995	Report Number	0000060076
Samples	8	Date Reported	30 Apr 2013

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS Environmental Services' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction DateColour by Discrete Analyser6 itemsAnalysis DateColour by Discrete Analyser6 items

Sample counts by matrix	8 Water	Type of documentation received	COC	
Date documentation received	18/4/2013	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	18°C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice	Samples clearly labelled	Yes	
Complete documentation received	Yes	Number of eskies/boxes received	2	

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services 10 Reid Rd PO Box 32

Newburn WA 6105 Welshpool WA 6983

5 Australia 33 Australia

t +61 8 9373 3500 f +61 8 9373 3556

www.au.sgs.com

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or **Red** with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Acidity and Free CO2							Method:	ME-(AU)-[ENV]AN140
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW01	PE076727.001	LB062657	17 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013
MW02	PE076727.002	LB062657	17 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013
MW03	PE076727.003	LB062657	17 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013
MW04	PE076727.004	LB062657	17 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013
MW05	PE076727.005	LB062657	17 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013
DUP01	PE076727.006	LB062657	17 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013
Alkalinity			F		- P			ME-(AU)-[ENV]AN135
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW01	PE076727.001	LB062656	17 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013
MW02	PE076727.002	LB062656	17 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013
MW03	PE076727.003	LB062656	17 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013
MW04	PE076727.004	LB062656	17 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013
MW05	PE076727.004	LB062656		· · · · · · · · · · · · · · · · · · ·				
DUP01		LB062656	17 Apr 2013	18 Apr 2013 18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013
	PE076727.006		17 Apr 2013	•	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013
RIN01	PE076727.007	LB062656	17 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013	18 Apr 2013
Chloride by Discrete Analys Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	ME-(AU)-[ENV]AN274 Analysed
MW01	PE076727.001	LB062899	17 Apr 2013	18 Apr 2013	15 May 2013	24 Apr 2013	15 May 2013	26 Apr 2013
MW01 MW02	PE076727.001	LB062899	17 Apr 2013	18 Apr 2013	15 May 2013	24 Apr 2013 24 Apr 2013	15 May 2013	26 Apr 2013
MW02 MW03	PE076727.002	LB062899	•	· · ·	15 May 2013			26 Apr 2013
MW03 MW04	PE076727.003	LB062899	17 Apr 2013 17 Apr 2013	18 Apr 2013 18 Apr 2013	15 May 2013	24 Apr 2013 24 Apr 2013	15 May 2013 15 May 2013	26 Apr 2013
MW04 MW05		LB062899						
	PE076727.005 PE076727.006		17 Apr 2013	18 Apr 2013	15 May 2013	24 Apr 2013	15 May 2013	26 Apr 2013 26 Apr 2013
DUP01 RIN01	PE076727.008	LB062899 LB062899	17 Apr 2013	18 Apr 2013	15 May 2013	24 Apr 2013 24 Apr 2013	15 May 2013 15 May 2013	
Colour by Discrete Analyse		LD002099	17 Apr 2013	18 Apr 2013	15 May 2013	24 Apr 2013		26 Apr 2013 ME-(AU)-[ENV]AN285
· ·								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW01	PE076727.001	LB062679	17 Apr 2013	18 Apr 2013	19 Apr 2013	22 Apr 2013†	19 Apr 2013	22 Apr 2013†
MW02	PE076727.002	LB062679	17 Apr 2013	18 Apr 2013	19 Apr 2013	22 Apr 2013†	19 Apr 2013	22 Apr 2013†
MW03	PE076727.003	LB062679	17 Apr 2013	18 Apr 2013	19 Apr 2013	22 Apr 2013†	19 Apr 2013	22 Apr 2013†
MW04	PE076727.004	LB062679	17 Apr 2013	18 Apr 2013	19 Apr 2013	22 Apr 2013†	19 Apr 2013	22 Apr 2013†
MW05	PE076727.005	LB062679	17 Apr 2013	18 Apr 2013	19 Apr 2013	22 Apr 2013†	19 Apr 2013	22 Apr 2013†
DUP01	PE076727.006	LB062679	17 Apr 2013	18 Apr 2013	19 Apr 2013	22 Apr 2013†	19 Apr 2013	22 Apr 2013†
Filterable Reactive Phosph								ME-(AU)-[ENV]AN278
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW01	PE076727.001	LB062623	17 Apr 2013	18 Apr 2013	15 May 2013	19 Apr 2013	15 May 2013	19 Apr 2013
MW02	PE076727.002	LB062623	17 Apr 2013	18 Apr 2013	15 May 2013	19 Apr 2013	15 May 2013	19 Apr 2013
MW03	PE076727.003	LB062623	17 Apr 2013	18 Apr 2013	15 May 2013	19 Apr 2013	15 May 2013	19 Apr 2013
MW04	PE076727.004	LB062623	17 Apr 2013	18 Apr 2013	15 May 2013	19 Apr 2013	15 May 2013	19 Apr 2013
MW05	PE076727.005	LB062623	17 Apr 2013	18 Apr 2013	15 May 2013	19 Apr 2013	15 May 2013	19 Apr 2013
DUP01	PE076727.006	LB062623	17 Apr 2013	18 Apr 2013	15 May 2013	19 Apr 2013	15 May 2013	19 Apr 2013
Fluoride by Ion Selective E	lectrode in Water							ME-(AU)-[ENV]AN141
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW01	PE076727.001	LB062935	17 Apr 2013	18 Apr 2013	15 May 2013	24 Apr 2013	15 May 2013	24 Apr 2013
MW02	PE076727.002	LB062935	17 Apr 2013	18 Apr 2013	15 May 2013	24 Apr 2013	15 May 2013	24 Apr 2013
MW03	PE076727.003	LB062935	17 Apr 2013	18 Apr 2013	15 May 2013	24 Apr 2013	15 May 2013	24 Apr 2013
MW04	PE076727.004	LB062935	17 Apr 2013	18 Apr 2013	15 May 2013	24 Apr 2013	15 May 2013	24 Apr 2013
MW05	PE076727.005	LB062935	17 Apr 2013	18 Apr 2013	15 May 2013	24 Apr 2013	15 May 2013	24 Apr 2013
DUP01	PE076727.006	LB063107	17 Apr 2013	18 Apr 2013	15 May 2013	29 Apr 2013	15 May 2013	29 Apr 2013
Low Level Ammonia Nitrog	en by FIA						Method:	ME-(AU)-[ENV]AN261
	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Sample Name		LB063004	17 Apr 2013	18 Apr 2013	15 May 2013	26 Apr 2013	15 May 2013	29 Apr 2013
Sample Name MW01	PE076727.001	LD003004						
	PE076727.001 PE076727.002	LB063004	17 Apr 2013	18 Apr 2013	15 May 2013	26 Apr 2013	15 May 2013	29 Apr 2013
MW01				18 Apr 2013 18 Apr 2013	15 May 2013 15 May 2013	26 Apr 2013 26 Apr 2013	15 May 2013 15 May 2013	29 Apr 2013 29 Apr 2013
MW01 MW02	PE076727.002	LB063004	17 Apr 2013					
MW01 MW02 MW03	PE076727.002 PE076727.003	LB063004 LB063004	17 Apr 2013 17 Apr 2013	18 Apr 2013	15 May 2013	26 Apr 2013	15 May 2013	29 Apr 2013

Method: ME-(AU)-IENVIAN320/AN321

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury (dissolved) in Wate	er						Method: ME-(AU)-[ENV]AN311/AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RIN01	PE076727.007	LB062798	17 Apr 2013	18 Apr 2013	15 May 2013	23 Apr 2013	15 May 2013	23 Apr 2013
Mercury (total) in Water							Method: ME-(AU)-[ENV]AN311/AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RIN01	PE076727.007	LB062795	17 Apr 2013	18 Apr 2013	15 May 2013	23 Apr 2013	15 May 2013	23 Apr 2013

Metals in Water (Dissolved) by ICPOES

Motala III Water (Diabolve							Modiod. ML-(AO	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW01	PE076727.001	LB062598	17 Apr 2013	18 Apr 2013	14 Oct 2013	19 Apr 2013	14 Oct 2013	24 Apr 2013
MW02	PE076727.002	LB062598	17 Apr 2013	18 Apr 2013	14 Oct 2013	19 Apr 2013	14 Oct 2013	24 Apr 2013
MW03	PE076727.003	LB062598	17 Apr 2013	18 Apr 2013	14 Oct 2013	19 Apr 2013	14 Oct 2013	24 Apr 2013
MW04	PE076727.004	LB062598	17 Apr 2013	18 Apr 2013	14 Oct 2013	19 Apr 2013	14 Oct 2013	24 Apr 2013
MW05	PE076727.005	LB062598	17 Apr 2013	18 Apr 2013	14 Oct 2013	19 Apr 2013	14 Oct 2013	24 Apr 2013
DUP01	PE076727.006	LB062598	17 Apr 2013	18 Apr 2013	14 Oct 2013	19 Apr 2013	14 Oct 2013	24 Apr 2013
RIN01	PE076727.007	LB062598	17 Apr 2013	18 Apr 2013	14 Oct 2013	19 Apr 2013	14 Oct 2013	24 Apr 2013
Nitrate Nitrogen and Nitrit	e Nitrogen (NOx) by FIA						Method: I	ME-(AU)-[ENV]AN25
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW01	PE076727.001	LB063004	17 Apr 2013	18 Apr 2013	15 May 2013	26 Apr 2013	15 May 2013	29 Apr 2013
MW02	PE076727.002	LB063004	17 Apr 2013	18 Apr 2013	15 May 2013	26 Apr 2013	15 May 2013	29 Apr 2013
MW03	PE076727.003	LB063004	17 Apr 2013	18 Apr 2013	15 May 2013	26 Apr 2013	15 May 2013	29 Apr 2013
MW04	PE076727.004	LB063004	17 Apr 2013	18 Apr 2013	15 May 2013	26 Apr 2013	15 May 2013	29 Apr 2013
MW05	PE076727.005	LB063004	17 Apr 2013	18 Apr 2013	15 May 2013	26 Apr 2013	15 May 2013	29 Apr 2013
DUP01	PE076727.006	LB063004	17 Apr 2013	18 Apr 2013	15 May 2013	26 Apr 2013	15 May 2013	29 Apr 2013
Sulphate in water							Method: I	ME-(AU)-[ENV]AN27
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed

e a lipie i tallie	e anipie itei		e a p .e a					
MW01	PE076727.001	LB062899	17 Apr 2013	18 Apr 2013	15 May 2013	24 Apr 2013	15 May 2013	26 Apr 2013
MW02	PE076727.002	LB062899	17 Apr 2013	18 Apr 2013	15 May 2013	24 Apr 2013	15 May 2013	26 Apr 2013
MW03	PE076727.003	LB062899	17 Apr 2013	18 Apr 2013	15 May 2013	24 Apr 2013	15 May 2013	26 Apr 2013
MW04	PE076727.004	LB062899	17 Apr 2013	18 Apr 2013	15 May 2013	24 Apr 2013	15 May 2013	26 Apr 2013
MW05	PE076727.005	LB062899	17 Apr 2013	18 Apr 2013	15 May 2013	24 Apr 2013	15 May 2013	26 Apr 2013
DUP01	PE076727.006	LB062899	17 Apr 2013	18 Apr 2013	15 May 2013	24 Apr 2013	15 May 2013	26 Apr 2013
RIN01	PE076727.007	LB062899	17 Apr 2013	18 Apr 2013	15 May 2013	24 Apr 2013	15 May 2013	26 Apr 2013

Method: ME-(AU)-[ENV]AN149

Method: ME-(AU)-[ENV]AN281

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW01	PE076727.001	LB062681	17 Apr 2013	18 Apr 2013	24 Apr 2013	22 Apr 2013	24 Apr 2013	24 Apr 2013
MW02	PE076727.002	LB062681	17 Apr 2013	18 Apr 2013	24 Apr 2013	22 Apr 2013	24 Apr 2013	24 Apr 2013
MW03	PE076727.003	LB062681	17 Apr 2013	18 Apr 2013	24 Apr 2013	22 Apr 2013	24 Apr 2013	24 Apr 2013
MW04	PE076727.004	LB062681	17 Apr 2013	18 Apr 2013	24 Apr 2013	22 Apr 2013	24 Apr 2013	24 Apr 2013
MW05	PE076727.005	LB062681	17 Apr 2013	18 Apr 2013	24 Apr 2013	22 Apr 2013	24 Apr 2013	24 Apr 2013
DUP01	PE076727.006	LB062681	17 Apr 2013	18 Apr 2013	24 Apr 2013	22 Apr 2013	24 Apr 2013	24 Apr 2013

TKN Kjeldahl Digestion by Discrete Analyser

Sulphide by Titration in Water

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW01	PE076727.001	LB062640	17 Apr 2013	18 Apr 2013	15 May 2013	19 Apr 2013	15 May 2013	24 Apr 2013
MW02	PE076727.002	LB062640	17 Apr 2013	18 Apr 2013	15 May 2013	19 Apr 2013	15 May 2013	24 Apr 2013
MW03	PE076727.003	LB062640	17 Apr 2013	18 Apr 2013	15 May 2013	19 Apr 2013	15 May 2013	24 Apr 2013
MW04	PE076727.004	LB062640	17 Apr 2013	18 Apr 2013	15 May 2013	19 Apr 2013	15 May 2013	24 Apr 2013
MW05	PE076727.005	LB062640	17 Apr 2013	18 Apr 2013	15 May 2013	19 Apr 2013	15 May 2013	24 Apr 2013
DUP01	PE076727.006	LB062640	17 Apr 2013	18 Apr 2013	15 May 2013	19 Apr 2013	15 May 2013	24 Apr 2013

Total and Volatile Suspended Solids (TSS / VSS)

Total and Volatile Susper	otal and Volatile Suspended Solids (TSS / VSS)								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
MW01	PE076727.001	LB062689	17 Apr 2013	18 Apr 2013	24 Apr 2013	22 Apr 2013	29 Apr 2013	24 Apr 2013	
MW02	PE076727.002	LB062689	17 Apr 2013	18 Apr 2013	24 Apr 2013	22 Apr 2013	29 Apr 2013	24 Apr 2013	
MW03	PE076727.003	LB062689	17 Apr 2013	18 Apr 2013	24 Apr 2013	22 Apr 2013	29 Apr 2013	24 Apr 2013	
MW04	PE076727.004	LB062689	17 Apr 2013	18 Apr 2013	24 Apr 2013	22 Apr 2013	29 Apr 2013	24 Apr 2013	
MW05	PE076727.005	LB062689	17 Apr 2013	18 Apr 2013	24 Apr 2013	22 Apr 2013	29 Apr 2013	24 Apr 2013	
DUP01	PE076727.006	LB062689	17 Apr 2013	18 Apr 2013	24 Apr 2013	22 Apr 2013	29 Apr 2013	24 Apr 2013	

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1: 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Phosphorus by Kjeldahl Digestion DA in Water Method: ME-(AU)-[ENV]AN279/AN293 Sampled Sample Name Sample No. QC Ref Extraction Due Analysis Due Analysed Received Extracted MW01 PE076727.001 I B062640 17 Apr 2013 18 Apr 2013 15 May 2013 19 Apr 2013 15 May 2013 24 Apr 2013 MW02 15 May 2013 24 Apr 2013 PE076727.002 LB062640 17 Apr 2013 18 Apr 2013 15 May 2013 19 Apr 2013 MW03 PE076727.003 LB062640 17 Apr 2013 18 Apr 2013 15 May 2013 19 Apr 2013 15 May 2013 24 Apr 2013 MW04 PE076727.004 17 Apr 2013 18 Apr 2013 15 May 2013 LB062640 15 May 2013 19 Apr 2013 24 Apr 2013 MW05 PE076727.005 LB062640 17 Apr 2013 18 Apr 2013 19 Apr 2013 15 May 2013 24 Apr 2013 15 May 2013 DUP01 PE076727.006 LB062640 17 Apr 2013 18 Apr 2013 15 May 2013 19 Apr 2013 15 May 2013 24 Apr 2013 Method: ME-(AU)-[ENV]AN318 Trace Metals (Dissolved) in Water by ICPMS Sample Nan Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed MW01 PE076727 001 I B062606 17 Apr 2013 18 Apr 2013 14 Oct 2013 19 Apr 2013 14 Oct 2013 22 Apr 2013 MW02 PE076727.002 LB062606 17 Apr 2013 18 Apr 2013 14 Oct 2013 19 Apr 2013 14 Oct 2013 22 Apr 2013 MW03 LB062606 PE076727.003 17 Apr 2013 18 Apr 2013 14 Oct 2013 19 Apr 2013 14 Oct 2013 23 Apr 2013 MW04 PE076727.004 LB062606 17 Apr 2013 18 Apr 2013 14 Oct 2013 19 Apr 2013 14 Oct 2013 23 Apr 2013 MW05 PE076727.005 LB062606 17 Apr 2013 18 Apr 2013 14 Oct 2013 19 Apr 2013 14 Oct 2013 23 Apr 2013 DUP01 PE076727.006 LB062606 17 Apr 2013 18 Apr 2013 14 Oct 2013 19 Apr 2013 14 Oct 2013 23 Apr 2013 14 Oct 2013 14 Oct 2013 RIN01 PE076727.007 LB062606 17 Apr 2013 18 Apr 2013 19 Apr 2013 22 Apr 2013 Trace Metals (Total) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Analysis Due Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysed

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
VOCs in Water							Method: ME-(AU)-[ENV]AN433/AN434
RIN01	PE076727.007	LB062610	17 Apr 2013	18 Apr 2013	14 Oct 2013	19 Apr 2013	14 Oct 2013	22 Apr 2013
DUP01	PE076727.006	LB062610	17 Apr 2013	18 Apr 2013	14 Oct 2013	19 Apr 2013	14 Oct 2013	23 Apr 2013
MW05	PE076727.005	LB062610	17 Apr 2013	18 Apr 2013	14 Oct 2013	19 Apr 2013	14 Oct 2013	23 Apr 2013
MW04	PE076727.004	LB062610	17 Apr 2013	18 Apr 2013	14 Oct 2013	19 Apr 2013	14 Oct 2013	23 Apr 2013
MW03	PE076727.003	LB062610	17 Apr 2013	18 Apr 2013	14 Oct 2013	19 Apr 2013	14 Oct 2013	23 Apr 2013
MW02	PE076727.002	LB062610	17 Apr 2013	18 Apr 2013	14 Oct 2013	19 Apr 2013	14 Oct 2013	22 Apr 2013
MVV01	PE076727.001	LB062610	17 Apr 2013	18 Apr 2013	14 Oct 2013	19 Apr 2013	14 Oct 2013	22 Apr 2013

e a lipie i taille	eanipie itei		e a li pie a					
Trip Blank	PE076727.008	LB062719	17 Apr 2013	18 Apr 2013	24 Apr 2013	22 Apr 2013	01 Jun 2013	24 Apr 2013
<u>.</u>								

Volatile Petroleum Hydroca		Method: ME-(AU)-[ENV]	AN433/AN434/AN410					
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Trip Blank	PE076727.008	LB062719	17 Apr 2013	18 Apr 2013	24 Apr 2013	22 Apr 2013	01 Jun 2013	24 Apr 2013

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOCs in Water Method: ME-(AU)-[ENV]AN433/AN434 Parameter Sample Number Criteria Recovery % Sample Name Units Bromofluorobenzene (Surrogate) Trip Blank PE076727.008 % 40 - 130% 123 d4-1,2-dichloroethane (Surrogate) Trip Blank PE076727.008 % 40 - 130% 97 d8-toluene (Surrogate) Trip Blank PE076727.008 40 - 130% 120 % Dibromofluoromethane (Surrogate) Trip Blank PE076727.008 % 40 - 130% 99 Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433/AN434/AN410 Parameter Sample Nam Criteria Recovery % Sample Numb Units Bromofluorobenzene (Surrogate) Trip Blank PE076727.008 % 60 - 130% 123 d4-1,2-dichloroethane (Surrogate) Trip Blank PE076727.008 % 60 - 130% 97 Trip Blank PE076727.008 % 60 - 130% 120 d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) Trip Blank PE076727.008 % 60 - 130% 99

METHOD BLANKS

PE076727 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Acidity and Free CO2			Meth	od: ME-(AU)-[ENV]AN140
Sample Number	Parameter	Units	LOR	Result
LB062657.001	Acidity to pH 8.3	mg CaCO3/L	5	<5

Alkalinity

Alkalinity			Meth	od: ME-(AU)-[ENV]AN135
Sample Number	Parameter	Units	LOR	Result
LB062656.001	Total Alkalinity as CaCO3	mg/L	5	<5

Chloride by Discrete Analyser in Water

Chloride by Discrete Analyser in Water			Metho	d: ME-(AU)-[ENV]AN274
Sample Number	Parameter	Units	LOR	Result
LB062899.001	Chloride	mg/L	1	<1
LB062899.026	Chloride	mg/L	1	<1

Colour by Discrete Analyser

Colour by Discrete Analyser			Meth	od: ME-(AU)-[ENV]AN285	
Sample Number	Parameter		Units	LOR	Result
LB062679.001	Colour (True)		Hazen	1	<1
LB062679.025	Colour (True)		Hazen	1	<1

Filterable Reactive Phosphorus (FRP)

Filterable Reactive Phosphorus (FRP)			Metho	od: ME-(AU)-[ENV]AN278
Sample Number	Parameter	Units	LOR	Result
LB062623.001	Filterable Reactive Phosphorus	mg/L	0.002	<0.002

Fluoride by Ion Selective Electrode in Water

Fluoride by Ion Selective Electrode in Water			Metho	od: ME-(AU)-[ENV]AN141
Sample Number	Parameter	Units	LOR	Result
LB062935.001	Fluoride by ISE	mg/L	0.1	<0.1
LB062935.026	Fluoride by ISE	mg/L	0.1	<0.1
LB063107.001	Fluoride by ISE	mg/L	0.1	<0.1
LB063107.026	Fluoride by ISE	mg/L	0.1	<0.1
Low Level Ammonia Nitrogen by FIA			Metho	od: ME-(AU)-[ENV]AN261
Sample Number	Parameter	Units	LOR	Result
LB063004.001	Ammonia Nitrogen, NH₃ as N	mg/L	0.005	<0.005
	Ammonia, NH₃	mg/L	0.005	<0.005
LB063004.024	Ammonia Nitrogen, NH₃ as N	mg/L	0.005	<0.005
	Ammonia, NH₃	mg/L	0.005	<0.005
Mercury (dissolved) in Water			Method: ME-	(AU)-[ENV]AN311/AN312
Sample Number	Parameter	Units	LOR	Result
LB062798.001	Mercury	mg/L	0.00005	<0.00005

Mercury (total) in Water

Mercury (total) in Water			Method: ME-(AU)-[ENVJAN311/AN312
Sample Number	Parameter	Units	LOR	Result
LB062795.001	Total Mercury	mg/L	0.0001	<0.0001

Netals in Water (Dissolved) by ICPOES			Method: ME-	(AU)-[ENV]AN320/AN321
Sample Number	Parameter	Units	LOR	Result
LB062598.001	Calcium, Ca	mg/L	0.2	<0.2
	Magnesium, Mg	mg/L	0.1	<0.1
	Potassium, K	mg/L	0.1	<0.1
	Silicon, Si	mg/L	0.02	<0.02
	Sodium, Na	mg/L	0.5	<0.5
Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA			Metho	od: ME-(AU)-[ENV]AN258
Sample Number	Parameter	Units	LOR	

METHOD BLANKS

PE076727 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA (continued)

Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA (contin	ate Nitrogen and Nitrite Nitrogen (NOx) by FIA (continued)		Metho	od: ME-(AU)-[ENV]AN258
Sample Number	Parameter	Units	LOR	Result
LB063004.001	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.005	<0.005
	Nitrite Nitrogen, NO ₂ as N	mg/L	0.005	<0.005
LB063004.024	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.005	<0.005
	Nitrite Nitrogen, NO₂ as N	mg/L	0.005	<0.005
Sulphate in water			Metho	d: ME-(AU)-[ENV]AN275
Sample Number	Parameter	Units	LOR	Result
LB062899.001	Sulphate	mg/L	1	<1
LB062899.025	Sulphate	mg/L	1	<1

Sulphide by Titration in Water

Sulphide by Titration in Water		Met	Method: ME-(AU)-[ENV]AN149	
Sample Number	Parameter	Units	LOR	Result
LB062681.001	Sulphide	mg/L	0.5	<0.5

TKN Kjeldahl Digestion by Discrete Analyser

TKN Kjeldahl Digestion by Discrete Analyser Method: ME-(AU)-[ENV]			od: ME-(AU)-[ENV]AN281	
Sample Number	Parameter	Units	LOR	Result
LB062640.001	Total Kjeldahl Nitrogen	mg/L	0.05	<0.05

Total and Volatile Suspended Solids (TSS / VSS)			Meth	od: ME-(AU)-[ENV]AN114
Sample Number	Parameter	Units	LOR	Result
LB062689.001	Total Suspended Solids Dried at 105°C	mg/L	5	<5

Total Phoenhorus by Kieldahl Digestion DA in Wate

Total Phosphorus by Kjeldahl Digestion DA in Water		Method: ME-(AU)-[ENV]AN279/AN293		
Sample Number	Parameter	Units	LOR	Result
LB062640.001	Total Phosphorus (Kjeldahl Digestion)	mg/L	0.01	<0.01

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Dissolved) in Water by ICPMS			Metho	od: ME-(AU)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result
LB062606.001	Aluminium, Al	µg/L	5	<5
	Arsenic, As	µg/L	1	<1
	Cadmium, Cd	µg/L	0.1	<0.1
	Chromium, Cr	µg/L	1	<1
	Copper, Cu	µg/L	1	<1
	Iron, Fe	µg/L	5	<5
	Lead, Pb	µg/L	1	<1
	Manganese, Mn	µg/L	1	<1
	Nickel, Ni	µg/L	1	<1
	Selenium, Se	µg/L	2	<2
	Zinc, Zn	µg/L	5	<5

Trace Metals (Total) in Water by ICPM			Meth	od: ME-(AU)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result
LB062610.001	Total Aluminium	μg/L	5	<5
	Total Arsenic	μg/L	1	<1
	Total Cadmium	μg/L	0.1	<0.1
	Total Chromium	μg/L	1	<1
	Total Copper	μg/L	1	<1
	Total Lead	μg/L	1	<1
	Total Nickel	μg/L	1	<1
	Total Zinc	µg/L	5	<5
VOCs in Water			Method: ME-	-(AU)-[ENV]AN433/AN434
Comple Number	Devenueter	Unite	LOD	Decult

Sample Number		Parameter	Units	LOR	Result
LB062719.001	Monocyclic Aromatic	Benzene	µg/L	0.5	<0.5
	Hydrocarbons	Toluene	µg/L	0.5	<0.5
		Ethylbenzene	µg/L	0.5	<0.5

METHOD BLANKS

PE076727 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOCs in Water (continued)

VOCs in Water (contin	ued)			Method: ME-	(AU)-[ENV]AN433/AN4
Sample Number		Parameter	Units	LOR	Result
LB062719.001	Monocyclic Aromatic	m/p-xylene	μg/L	1	<1
	Hydrocarbons	o-xylene	μg/L	0.5	<0.5
	Oxygenated Compounds	MtBE (Methyl-tert-butyl ether)	μg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	100
		d4-1,2-dichloroethane (Surrogate)	%	-	101
		d8-toluene (Surrogate)	%	-	108
		Bromofluorobenzene (Surrogate)	%	-	104
Volatile Petroleum Hyd	frocarbons in Water		1	Method: ME-(AU)-[E	NV]AN433/AN434/AN4
Sample Number		Parameter	Units	LOR	Result
LB062719.001		TRH C6-C9	µg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	100
		d4-1,2-dichloroethane (Surrogate)	%	-	101
		d8-toluene (Surrogate)	%	-	108
		Bromofluorobenzene (Surrogate)	%	-	104

Method: ME-(AU)-[ENV]AN285

15

0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Acidity and Free CC	Acidity and Free CO2 Method: ME-(AU)-[ENV]						ENVJAN140	
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE076727.006	LB062657.012	Acidity to pH 8.3	mg CaCO3/L	5	57	58	24	1

Alkalinity

Alkalinity						Meth	od: ME-(AU)-	ENVJAN135
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE076724.003	LB062656.015	Total Alkalinity as CaCO3	mg/L	5	<5	<5	200	0
PE076724.007	LB062656.020	Total Alkalinity as CaCO3	mg/L	5	<5	<5	200	0
PE076727.003	LB062656.007	Total Alkalinity as CaCO3	mg/L	5	560	560	16	0

Chloride by Discrete Analyser in Water

Chloride by Discrete	Analyser in Water					Meth	od: ME-(AU)-	ENVJAN274
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE076804.010	LB062899.014	Chloride	mg/L	1	10579.8	10063.897	15	5
PE076820.005	LB062899.029	Chloride	mg/L	1	1541.373	1554.99	15	1
PE076828.003	LB062899.039	Chloride	mg/L	1	14.252	14.154	22	1

Colour by Discrete Analyser

PE076732.003

	•							
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE076680.003	LB062679.024	Colour (True)	Hazen	1	<1	<1	200	0
PE076713.002	LB062679.013	Colour (True)	Hazen	1	<1	<1	200	0
PE076727.001	LB062679.037	Colour (True)	Hazen	1	<1	<1	200	0
PE076727.006	LB062679.043	Colour (True)	Hazen	1	<1	<1	200	0
Filterable Reactive	e Phosphorus (FRP)					Meth	od: ME-(AU)-	ENVJAN278
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE076717.001	LB062623.014	Filterable Reactive Phosphorus	mg/L	0.002	0.1052	0.1093	20	4

mg/L

0.002

22.5035

22.4227

Fluoride by Ion Selective Electrode in Water

I B062623 024

Fluoride by Ion Sele	ective Electrode in Water					Meth	od: ME-(AU)-	(ENVJAN141
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE066891CL32.	LB063107.014	Fluoride by ISE	mg/L	0.1	0	0	200	0
PE076680.001	LB062935.014	Fluoride by ISE	mg/L	0.1	0.3	0.3	48	3
PE076713.001	LB062935.028	Fluoride by ISE	mg/L	0.1	<0.1	<0.1	200	0
PE076717.002	LB062935.040	Fluoride by ISE	mg/L	0.1	0.6	0.59	32	2
PE076727.005	LB062935.045	Fluoride by ISE	mg/L	0.1	0.4	0.4	42	0
PE076774.007	LB063107.045	Fluoride by ISE	mg/L	0.1	0	0	200	0
PE076865.008	LB063107.040	Fluoride by ISE	mg/L	0.1	0.32	0.3	47	6
PE076868.002	LB063107.028	Fluoride by ISE	mg/L	0.1	0.23	0.22	59	4

Low Level Ammonia Nitrogen by FIA Method: ME-(AU)-[ENV]AN261 Original Duplicate Original Duplicate Criteria % RPD % Parameter Units LOR PE076628.002 LB063004.037 Ammonia Nitrogen, NH3 as N 0.005 0 0 200 0 mg/L PE076762.008 LB063004.026 Ammonia Nitrogen, NH3 as N 200 mg/L 0.005 0 0 0 Ammonia, NH₃ mg/L 0.005 0 0 200 0 PE076775.012 LB063004.013 Ammonia Nitrogen, NH3 as N 0.005 200 0 0 0 mg/L <0.005 <0.005 Ammonia, NH₃ 0.005 200 mg/L 0 Method: ME-(AU)-[ENV]AN311/AN312

Mercury (dissolved) in Water

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE076685.001	LB062798.014	Mercury	µg/L	0.00005	<0.00005	<0.00005	200	0
PE076727.007	LB062798.027	Mercury	μg/L	0.00005	<0.00005	<0.00005	200	0

Mercury (total) in Water

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE076727.007	LB062795.010	Total Mercury	µg/L	0.0001	<0.0001	<0.0001	200	0

Metals in Water (Dissolved) by ICPOES

Original Duplicate Parameter Units LOR				
	Original	Duplicate	Parameter	Units LOR

Filterable Reactive Phosphorus

Method: ME-(AU)-[ENV]AN320/AN321

Method: ME-(AU)-[ENV]AN311/AN312

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE076727.001	LB062598.014	Calcium, Ca	mg/L	0.2	160	150	15	5
		Magnesium, Mg	mg/L	0.1	49	47	15	4
		Potassium, K	mg/L	0.1	8.2	7.9	16	4
		Silicon, Si	mg/L	0.02	16	15	15	4
		Sodium, Na	mg/L	0.5	270	260	15	5
PE076727.007	LB062598.021	Calcium, Ca	mg/L	0.2	<0.2	<0.2	200	0
		Magnesium, Mg	mg/L	0.1	<0.1	<0.1	200	0
		Potassium, K	mg/L	0.1	<0.1	<0.1	200	0
		Sodium, Na	mg/L	0.5	<0.5	<0.5	200	0
litrate Nitrogen a	nd Nitrite Nitrogen (NOx) by FIA					Meth	nod: ME-(AU)-	(ENVJAN2
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE076762.008	LB063004.026	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.005	0.013	0.019	46	38
		Nitrite Nitrogen, NO₂ as N	mg/L	0.005	0	0	200	0
PE076775.012	LB063004.013	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.005	0	0	200	0
		Nitrite Nitrogen, NO₂ as N	mg/L	0.005	0	0	200	0
ulphate in water						Mett	nod: ME-(AU)-	(ENVJAN2
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE076804.010	LB062899.014	Sulphate	mg/L	1	13.804	13.743	22	0
PE076820.005	LB062899.029	Sulphate	mg/L	1	181.811	188.72	16	4
PE076828.003	LB062899.040	Sulphate	mg/L	1	2.013	2.685	58	29
KN Kjeldahl Dige	estion by Discrete Analyser					Mett	nod: ME-(AU)-	[ENV]AN2
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE076655.003	LB062640.024	Total Kjeldahl Nitrogen	mg/L	0.05	22.1125	19.94	15	10
PE076655.010	LB062640.032	Total Kjeldahl Nitrogen	mg/L	0.05	15.9575	16.365	15	3
PE076717.001	LB062640.006	Total Kjeldahl Nitrogen	mg/L	0.05				
otal and Volatile	Suspended Solids (TSS / VSS)					Meth	nod: ME-(AU)-	IENVIAN1
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate		RPD %
PE076717.001	LB062689.015	Total Suspended Solids Dried at 105°C	mg/L	5		445.58823529		4

Total Phosphorus by Kjeldahl Digestion DA in Water						Method: ME	-(AU)-[ENV]A	N279/AN29
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE076655.003	LB062640.024	Total Phosphorus (Kjeldahl Digestion)	mg/L	0.01	20.74	18.6525	15	11
PE076655.010	LB062640.032	Total Phosphorus (Kjeldahl Digestion)	mg/L	0.01	19.2375	19.1125	15	1
PE076717.001	LB062640.006	Total Phosphorus (Kjeldahl Digestion)	mg/L	0.01				

Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Original Duplicate Parameter LOR Original Duplicate Criteria % RPD % PE076727.007 LB062606.011 200 Arsenic, As µg/L 1 <1 <1 0 Cadmium, Cd µg/L 0.1 <0.1 <0.1 200 0 Chromium, Cr 200 0 <1 <1 µg/L 1 200 Copper, Cu <1 <1 0 µg/L 1 Lead, Pb µg/L 1 <1 <1 200 0 Nickel, Ni <1 <1 200 0 µg/L 1 80 Zinc. Zn µg/L 5 8 8 2 Trace Metals (Total) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE076727.003	LB062610.014	Total Aluminium	µg/L	5	14000	12000	15	14
		Total Iron	µg/L	5	21000	20000	15	7
PE076727.007	LB062610.019	Total Arsenic	µg/L	1	<1	<1	200	0
		Total Cadmium	µg/L	0.1	<0.1	<0.1	200	0
		Total Chromium	µg/L	1	<1	<1	200	0
		Total Copper	μg/L	1	<1	<1	188	0
		Total Lead	µg/L	1	<1	<1	200	0
		Total Nickel	μg/L	1	<1	<1	145	0
		Total Zinc	µg/L	5	10	9	69	13

Method: ME-(AU)-[ENV]AN274

Method: ME-(ALI)-JENVJAN285

Method: ME-(AU)-[ENV]AN141

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Alkalinity					N	lethod: ME-(A	U)-[ENV]AN135
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB062656.002	Total Alkalinity as CaCO3	mg/L	5	200	225	85 - 115	91

Chloride by Discrete Analyser in Water

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB062899.002	Chloride	mg/L	1	20	20	85 - 115	101
LB062899.027	Chloride	mg/L	1	20	20	85 - 115	101

Colour by Discrete Analyser

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB062679.002	Colour (True)	Hazen	1	5	5	90 - 110	98
LB062679.026	Colour (True)	Hazen	1	5	5	90 - 110	101

Filterable Reactive Phosphorus (FRP)

Filterable Reactive Phosphorus (FRP							J)-[ENV]AN278
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB062623.002	Filterable Reactive Phosphorus	mg/L	0.002	0.054	0.05	80 - 120	108

Fluoride by Ion Selective Electrode in Water

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB062935.002	Fluoride by ISE	mg/L	0.1	2.1	2	80 - 120	104
LB063107.002	Fluoride by ISE	mg/L	0.1	2.0	2	80 - 120	100

Low Level Ammonia Nitrogen by FIA

Low Level Ammonia Nitrogen by FIA					N	lethod: ME-(A	U)-[ENV]AN261
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB063004.002	Ammonia Nitrogen, NH₃ as N	mg/L	0.005	0.75	0.8	85 - 115	93
	Ammonia, NH ₃	mg/L	0.005	0.90	0.971	85 - 115	93
LB063004.025	Ammonia Nitrogen, NH₃ as N	mg/L	0.005	0.77	0.8	85 - 115	96
	Ammonia, NH ₃	mg/L	0.005	0.93	0.971	85 - 115	96
Mercury (dissolved) in Water					Method:	ME-(AU)-[EN\	/jan311/an312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB062798.002	Mercury	mg/L	0.00005	0.0026	2.5	80 - 120	106

Mercury (total) in Water

Mercury (total) in Water				Method: ME-(AU)-[ENV]AN311/A LOR Result Expected Criteria % Recover			
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB062795.002	Total Mercury	mg/L	0.0001	0.0027	2.5	80 - 120	106

Metals in Water (Dissolved) by ICPOES

Metals in Water (Dissolved)	by ICPOES				Method:	ME-(AU)-[EN	/JAN320/AN321
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB062598.002	Calcium, Ca	mg/L	0.2	190	200	80 - 120	96
	Magnesium, Mg	mg/L	0.1	200	200	80 - 120	98
	Potassium, K	mg/L	0.1	22	20	80 - 120	109
	Silicon, Si	mg/L	0.02	2.1	2	80 - 120	105
	Sodium, Na	mg/L	0.5	200	200	80 - 120	101
Nitrate Nitrogen and Nitrite N	itrogen (NOx) by FIA				N	Nethod: ME-(A	U)-[ENV]AN258
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB063004.002	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.005	0.90	0.8	85 - 115	113
	Nitrite Nitrogen, NO ₂ as N	mg/L	0.005	0.78	0.8	85 - 115	97
LB063004.025	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.005	0.79	0.8	85 - 115	99
	Nitrite Nitrogen, NO₂ as N	mg/L	0.005	0.79	0.8	85 - 115	99
Sulphate in water					N	vethod: ME-(A	U)-[ENV]AN275

Sample Number	Parameter		Units	LOR

30/4/2013

Method: ME-(AU)-[ENV]AN149

Method: ME-(AU)-[ENV]AN318

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sulphate in water (continued)	1					Method: ME-(A	U)-[ENV]AN27
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB062899.002	Sulphate	mg/L	1	10	10	80 - 120	101
LB062899.027	Sulphate	mg/L	1	10	10	80 - 120	98

Sulphide by Titration in Water

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB062681.002	Sulphide	mg/L	0.5	0.9	1	80 - 120	92

TKN Kjeldahl Digestion by Discrete Analyser

TKN Kjeldahl Digestion by Discrete Analyser Method: ME-(AU)-[t							J)-[ENV]AN281
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB062640.002	Total Kjeldahl Nitrogen	mg/L	0.05	1.0	1	80 - 120	101

Total and Volatile Suspended Solids (TSS / VSS)

Total and Volatile Suspended Solids (TSS / VSS) Method: ME-					lethod: ME-(Al	J)-[ENV]AN114	
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB062689.002	Total Suspended Solids Dried at 105°C	mg/L	5	500	500	85 - 115	100

Total Phosphorus by Kjeldahl Digestion DA in Water Method: ME-(AU)-[ENV]AN279.								
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %	
LB062640.002	Total Phosphorus (Kjeldahl Digestion)	mg/L	0.01	0.48	0.5	80 - 120	96	

Trace Metals (Dissolved) in Water by ICPMS
--

Trace Metals (Dissolved) in W	ater by ICPMS				Method: ME-(AU)-[ENV]A					
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %			
LB062606.002	Aluminium, Al	μg/L	5	10	10	80 - 120	104			
	Aluminium, Al Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Iron, Fe Lead, Pb Manganese, Mn Nickel, Ni Selenium, Se	μg/L	1	10	10	80 - 120	98			
	Cadmium, Cd	μg/L	0.1	9.5	10	80 - 120	95			
	Chromium, Cr	μg/L	1	10	10	80 - 120	100			
	Copper, Cu	μg/L	1	10	10	80 - 120	97			
	Chromium, Cr Copper, Cu Iron, Fe Lead, Pb	μg/L	5	11	10	80 - 120	105			
	Cadmium, Cd Chromium, Cr Copper, Cu Iron, Fe Lead, Pb Manganese, Mn	μg/L	1	11	10	80 - 120	105			
	Manganese, Mn	μg/L	1	10	10	80 - 120	99			
	Nickel, Ni	μg/L	1	10	10	80 - 120	99			
	Selenium, Se	μg/L	2	11	10	80 - 120	112			
	Zinc, Zn	μg/L	5	10	10	80 - 120	96			

Trace Metals (Total) in Water by ICPMS

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB062610.002	Total Aluminium	µg/L	5	6	5	80 - 120	120
	Total Arsenic	µg/L	1	5	5	80 - 120	96
	Total Cadmium	µg/L	0.1	5.6	5	80 - 120	111
	Total Chromium	µg/L	1	6	5	80 - 120	116
	Total Copper	µg/L	1	6	5	80 - 120	119
	Total Iron	µg/L	5	5	5	80 - 120	108
	Total Lead	μg/L	1	6	5	80 - 120	113
	Total Nickel	μg/L	1	5	5	80 - 120	93
	Total Zinc	µg/L	5	<5	5	80 - 120	96

VOCs in Water						Method:	ME-(AU)-[EN\	/JAN433/AN434
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB062719.002	Monocyclic	Benzene	µg/L	0.5	5.5	5	50 - 150	111
	Aromatic	Toluene	µg/L	0.5	5.3	5	50 - 150	107
		Ethylbenzene	µg/L	0.5	5.1	5	50 - 150	101
	Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.9	5	60 - 130	119
		d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.9	5	60 - 130	119
		d8-toluene (Surrogate)	µg/L	-	6.4	5	60 - 130	129
		Bromofluorobenzene (Surrogate)	µg/L	-	6.2	5	60 - 130	124

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum H	Hydrocarbons in	Water	Method: ME-(AU)-[ENV]AN433/AN434/AN410					
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB062719.002		TRH C6-C9	μg/L	40	<40	30	70 - 130	99
	Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.9	5	60 - 130	119
		d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.9	5	60 - 130	119
		d8-toluene (Surrogate)	μg/L	-	6.4	5	60 - 130	129
		Bromofluorobenzene (Surrogate)	µg/L	-	6.2	5	60 - 130	124

MATRIX SPIKES

Method: ME-(AU)-[ENV]AN311/AN312

Method: ME-(AU)-[ENV]AN275

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Chloride by Discrete Analyser in Water

Chloride by Discrete Analyser in Water Method: ME-(AU)-[ENV]							J)-[ENV]AN274	
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
PE076820.002	LB062899.022	Chloride	mg/L	1	130	33.507	100	96
PE076828.002	LB062899.037	Chloride	mg/L	1	150	51.711	100	93

able Reactive Phosphorus (FRP)

Filterable Reactive Phosphorus (FRP) Method: ME-(AU)-[ENV]/								
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
PE076727.001	LB062623.017	Filterable Reactive Phosphorus	mg/L	0.002	0.061	0.004	0.05	115

Fluoride by Ion Selective Electrode in Water

Fluoride by Ion Selective Electrode in Water Method: ME-(AU)-[ENV]AN								J)-[ENV]AN141	
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%	
PE066116CL32	LB063107.004	Fluoride by ISE	mg/L	0.1	0.6	0	0.5	110	
PE066228AH24	LB062935.004	Fluoride by ISE	mg/L	0.1	0.5	<0.1	0.5	106	
PE076713.002	LB062935.029	Fluoride by ISE	mg/L	0.1	0.5	<0.1	0.5	106	
PE076868.003	LB063107.029	Fluoride by ISE	mg/L	0.1	0.8	0.27	0.5	104	
Mercury (dissolve	d) in Water			Method: ME-(AU)-[ENV]AN311/AN3					
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%	
PE076628.001	LB062798.004	Mercury	mg/L	0.00005	0.0019	0	0.0025	94	

Mercury (total) in Water

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
PE076679.001	LB062795.004	Total Mercury	mg/L	0.0001	0.0020	<0.0001	0.002	101

Method: ME-(AU)-[ENV]AN320/AN321 Metals in Water (Dissolved) by ICPOES QC Sample Sample Number Original Spike Recovery% Parameter LOR Result PE076725.001 LB062598.004 Sodium, Na 0.5 290 80 200 105 mg/L

Sulphate in water

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
PE076820.002	LB062899.021	Sulphate	mg/L	1	160	48.59	100	110
PE076828.002	LB062899.038	Sulphate	mg/L	1	130	34.468	100	99

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Dissolved) in Water by ICPMS					Method: ME-(AU)-[ENV]AN318					
QC Sample	Sample Number	Parameter		Units	LOR	Result	Original	Spike	Recovery%	
PE076727.001	LB062606.004	Aluminium, Al		µg/L	5	11	<5	10	77	
		Arsenic, As		µg/L	1	11	<1	10	103	
		Cadmium, Cd		µg/L	0.1	9.1	0.4	10	87	
		Chromium, Cr		µg/L	1	10	<1	10	99	
		Copper, Cu		µg/L	1	10	1	10	83	
		Iron, Fe		µg/L	5	11	<5	10	98	
		Lead, Pb		µg/L	1	9	<1	10	87	
		Manganese, Mn		µg/L	1	98	87	10	107	
		Nickel, Ni		µg/L	1	9	<1	10	85	
		Selenium, Se		µg/L	2	12	<2	10	107	
		Zinc, Zn		µg/L	5	19	10	10	85	
Trace Metals (To	Trace Metals (Total) in Water by ICPMS				Method: ME-(AU)-[ENV]AN318					
QC Sample	Sample Number	Parameter		Units	LOR	Result	Original	Spike	Recovery%	
PE076720.002	LB062610.004	Total Aluminium		µg/L	5	31	27	5	94	

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-11.pdf

- * Non-accredited analysis.
- Sample not analysed for this analyte.
- ^ Analysis performed by external laboratory.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- I Low surrogate recovery due to the sample emulsifying during extraction.
- † Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.